RCScrapyard ► Iconic Vintage Radio Controlled (RC) Model Car Archive ► Tamiya Ferrari 312T3. Item #49191
RCScrapyard Radio Controlled Models
Flags

Tamiya Ferrari 312T3 - #49191 (Radio Controlled Model)

1/10 Scale Electric Formula One Car - F103RS Chassis:

  Released by Tamiya on November 21, 2001, the original Tamiya Ferrari 312T3 was based on the F1 aluminium plate chassis, with a hard plastic bodyshell. This version of the model employs the F103RS chassis and has a lexan polycarbonate bodyshell.

Tamiya Ferrari 312T3 - #49191 F103RS

  The real Ferrari 312T3 was introduced into F1 Grand Prix racing in 1978. The car had success in the Constructor's Championship, attaining 2nd place and winning 4 Grand Prix in that same year with its driver Gilles Villeneuve.

  Basically, the F103RS chassis is a moderately upgraded F103. Upgrades include, to reduce weight, the metal damper has holed drilled in it. The best of the upgrades was the inclusion of a knurled nut adjuster for the friction plate damper, this made fine tuning much easier. A vast array of Hop-Ups were also available.

  Disappointingly, the kit comes with nylon/plastic and sintered brass bush type bearings that after a short while, when dust and grit get into them, will abrade the metal drive shafts that spin in them - if you are building this kit to race seriously these should be replaced by steel ball bearings.

  Some considered the F103RS to be a vast improvement over the basic model, but for me, even with the upgrades, it was only marginally better and not worth the extra cost. It was cheaper to upgrade my old F103 with the damper adjuster and a set of ball bearings I loved that car.


      Rating: 3.53.5 Stars out of 5 Reviewed by: RCScrapyard     Manual.





Gas/Nitro Engines Body Shells Radio Transmitters etc Tires Wheels/Rims Electronic Speed Controllers Battery Packs / Chargers Electric Motors












Items For Sale:
















Flags

Tamiya Ferrari 312T3 #49191 F103RS - Chassis
Tamiya Ferrari 312T3 #49191 F103RS Chassis
Tamiya Ferrari 312T3 #49191 F103RS
Tamiya Ferrari 312T3 #49191 F103RS Body Shell

General Information and Advice

   For those starting in Radio Controlled Racing, here are a few Hints and Tips: Firstly, buy a Kit not an RTR. That way, if something breaks you will have some idea how to fix it.

   Radio Controlled Model Cars are very fragile and easily broken. The main parts to protect are the Front Wishbones, Suspension Shock Towers, Dampers, Hub Carriers, Kingpins, Uprights and Toe in Blocks, so make sure you have a good strong front bumper and Lexan or Hard Plastic Body Shell and if available for your model, a protective under tray, to prevent grit and dust getting into any moving parts.

   The Steering Servo is also a weakness in high speed crash situations, so get yourself some good strong Servo Mount and Servo Saver. Also I would recommend Titanium Shafts, Turnbuckles, Tie Rods and pivot/steering shafts and if available for your model, lightweight Titanium Drive shafts, dog bones and CVD (Constant Velocity Drives). The standard steel types are far too easily bent.

   Gearing is another problem area on RC model cars. Head on collisions can easily break off gear teeth on Nylon/Plastic Spur Gears and even Bevel Gears inside the Gearbox. Heavy impacts can also loosen nuts and self taping screws that hold the Motor in Position, allowing the Pinion Gear to pull out of mesh slightly and rip the tops of the teeth on your Spur Gear. To avoid this to some degree, fit locking nuts and a new motor mount from time to time, so the self taping screws that hold the motor in position have less chance to come loose.

   Ball joints always cause problems. For top level Radio Controlled model car racing, the plastic ball connectors should be checked and if deemed necessary changed after every meeting. A simple thing like a loose fitting connector breaking free could easily end your race, so better safe than sorry.

   Many New car kits come with Nylon and Sintered Brass Ring type bearings. My advice is to discard these before initial installation and buy a good Hop-up set of Shielded Steel Ball Bearings. Or if you are serious about your racing, Teflon or Ceramic Bearings.

   One final piece of advice about the Setup of your Car. Keep the Centre of Gravity as low as possible. Ride Height is all important. For On Road Drift/Touring cars the Ride Height should be no more than 5mm, for Buggys, Trucks, Truggys and Monster Trucks, as low as possible depending on the track conditions. If Body Roll is a problem, handling can be improved with the use of Stabilizers, Anti roll or Sway Bars, stiffer Tuning Springs and, or thicker Silicon Oil in the Dampers. Also find somewhere to mount the Transponder as low in the Chassis as possible.

For Car Setup Information check out our Hints and Tips page.













^ TOP ^












Tamiya Buggys Tamiya Trucks Tamiya Monster Trucks Tamiya Rock Crawlers Tamiya Off Road Chassis Types Tamiya Touring Car Tamiya Drift Car Tamiya WRC Car Tamiya M Chassis
Tamiya Tractor Trucks Tamiya Touring Car Chassis Tamiya F1 Tamiya F1/Le Mans Chassis Types Tamiya Military Tamiya Tanks












Hints and Tips


Electric Motors for RC Models

Winds and Turns

Q/  What does 15x2 or 17x3 mean?
A/  The first number relates to the number of times the wires are wound round each of the 3 armature segments, the second number relates to the number of wires side by side. So a 15x2 would have 2 wires laid side by side and wrapped around each segment 15 times.

Q/  What is the difference in performance between a Low Turn motor (eg 11x1) and a High Turn motor (eg 27x1)?
A/  A Motor with Less Turns like an 11x1 means high current draw from the batteries which corresponds to less runtime, but More Power (Torque or Punch) Best for tracks with lots of corners and short straights where fast acceleration is needed. (use a small pinion)
Motors with More Turns like a 27x1 give you More runtime, but Less Power. So you get a smoother response and are therefore easier to drive. Better for less experienced drivers and Long straight, sweeping corner tracks. (with a large pinion) This is correct for Brushed, Modified and Stock Motors as well as Brushless Motors.

Q/  How do the number of winds effect a motor?
A/  A Motor with More Winds (number of wires eg 13x5) is less demanding on the battery and smoother in acceleration. Best for low grip, slippery tracks.
A Low Wind Motor (eg 11x1) is more punchy and can be difficult to handle. Best on high grip, hot weather Tarmac, or indoor carpet, high acceleration, low speed tracks.

Advance and Retard

Q/  What is Advance and Retard?
A/  On the Endbell of a Modified Motor (where the brushes fit) you will find two screws that hold the Endbell to the Can. If these screws are slackened off slightly the Endbell can then be twisted either Clockwise (Advance) or Anticlockwise (Retard). On Sensorless Brushless Motors this adjustment can generally be made in a similar way (although there are some Brushless Motors that have fixed timing for Spec level racing). Sensored Motors can be adjusted via the ESC.

Q/  What does "Advancing" the Endbell position do?
A/  Advancing the Endbell Reduces runtime, increases Punch (acceleration) and RPM to give a higher top speed.
On the down side, for Brushed Motors, the brushes wear faster and the increased current draw creates more arcing thus increased heat and Commutator (Comm) wear. Brushless Motors can lose some efficiency at the end of a race because of overheating due to increased current draw.

Q/  What does "Retarding" the Endbell position do?
A/  On both Brushed and Brushless Motors, Retarding the Endbell Increases runtime, decreases Punch (acceleration) and RPM to give a lower top speed and for Brushed Motors, brush wear and Commutator (Comm) wear is reduced.

Brushed Motor Basics

Q/  What is the effect of hard and soft Brushes?
A/  Basically, Hard brushes give a lower current draw, so consequently give longer run times and lower torque so less punch (acceleration)
Soft Brushes on the other hand increase current draw thus give higher torque and increased acceleration. Of course the down side of this is that Soft brushes wear much faster and must be changed more often. (I change mine when they get to around 5mm)

Q/  How does changing the brush spring change the motor?
A/  If you fit Stiffer Brush Springs your motor will have More power at low revs and also a lower top speed. I only ever fit stiff springs on bumpy tracks to reduce brush bounce.
Weaker springs reduce power but increase RPM so give less acceleration but a higher top speed. Good for long, sweeping, smooth tracks, where you can carry good speed through the corners.

For More Setup Information check out my Hints and Tips page.



Hints and Tips

Battery Connectors

   Over the years I have been racing radio controlled model cars of all descriptions, I have tried a number of different connectors for my batteries.

   My first car was a Tamiya Boomerang and of course the batteries I used all had the standard Tamiya connectors, which were fine with the kit supplied 27T silver can electric motor, but I soon discovered their problem when I installed my first Modified motor. The high current demands of the motor created so much heat, the plastic surround of the connectors melted and fused together. No matter how I tried they could not be disconnected. My only option was to cut the wires.

   From there I moved over to Corally connectors, commonly referred to by many now as Bullet connectors. Comprising of a short length of 4mm gold plated tube at one end and what looks like what we used to call a Chinese lantern fitting that slotted inside the tube, also gold plated. Although they were highly efficient and reasonably easy to install and use, I never really took to this type of connector, I think it was the fact each connector was exposed, leaving the possibility of a short circuit.

   Then I remember buying some second hand batteries at an area meeting one day, they had these little red block connectors I soon learned were "Deans" rated at around 40 Amps. The looked like just what I was looking for so I gave them a try. They worked fine, although I didn't like the shortness of the part to be soldered. However, for about two years they were my connector of choice, until I stumbled across an advert in the "Radio Race Car International" magazine.

   The latest development of connectors at that time were named "Power Pole" and rated at 45 Amps. A small tube, plated with silver, with a short extending lip, that slotted over the exposed wire. This could either be crimped onto the wire or soldered. For safety and efficiency, I preferred the latter. Then to complete the connector, a colour coded plastic cover fitted neatly over it. The connector is still the most efficient I have come across and never overheats. That was way back in 1995 and I am still using them to this day. So, if you are looking for a connector to solve your overheating problems "Power Pole" is the one I recommend.

For More Setup Information check out my Hints and Tips page.









^ TOP ^


On/Off Road
RC Models:

Radio
Equipment:

Accessories: