RCScrapyard ► Iconic Vintage Radio Controlled (RC) Model Car Archive ► Team Associated TQ10.
RCScrapyard Radio Controlled Models
Flags

1/10 Scale Electric Buggy:

Team Associated TQ10 Graphite (Radio Controlled Model)


Navigation: Sitemap  >  Manufacturers  >  Team Associated  >  Team Associated Timeline

All Manufacturers: Model Types  >  Buggys  >  1/10 Electric Buggys

History, Info (and How To Set-up Tips) for the TQ10


  Introduced in 1989, designed and developed by Team Associated exclusively for Horizon Hobby, the 2WD TQ10 Graphite Buggy was based on a modified RC10 chassis. Two versions were produced, the latter in 1990, with upgrades from the RC10 graphite.

  The model had a low CG gearbox, on a graphite plate chassis, with a VariLok ball differential, coil spring over oil filled dampers and a full set of ball bearings.

Team Associated TQ10 - 1:10 Electric Buggy
▼ Scroll Down for More Images ▼


  To race the Team Associated TQ10, it requires a high level of tuning for improved stability when cornering, to keep it on the track and give you more grip under acceleration. Even the smallest change in your cars settings can make a Big difference. Our simple to follow instruction chart will show how to attain the best Set-up for your personal requirements.

  With simple to follow language, we can point you towards the correct Electric Motor for your TQ10 and achieve the best Gearing, for your battery and motor combination.

  Learn the secrets the professionals have known for years to get the best from their Bearings using a number of simple tips. See how you can easily avert Radio interference, and the best way to safely Charge your Batteries, for improved acceleration and more run time.









Gas/Nitro Engines Body Shells Radio Transmitters etc Tires Wheels/Rims Electronic Speed Controllers Battery Packs / Chargers Electric Motors












Items For Sale:






Flags

★ Team Associated TQ10 Graphite Chassis ★
Team Associated TQ10 Graphite

★ Team Associated TQ10 Graphite ★
Team Associated TQ10 Graphite


Buying a Used Team Associated TQ10 Buggy (and What to look for)


   Buying a used Team Associated TQ10 Electric Buggy, or any used RC Model, has a number of advantages. It is generally cheaper than new, ready built and may come with a variety of expensive hop-ups already installed. Cheap, pre-loved bargains are always becoming available. However, depending on the age of your purchase, it may need a little tender loving care before you can take it out on the back yard.

   The one thing you will always need is an instruction manual. If not supplied with your purchase, they can often be downloaded from the Team Associated website, or purchased separately on eBay. With an instruction manual, any problems with your model Buggy you may discover can easily be fixed.

Dampers
   When you receive your used Team Associated Buggy, make a general visual inspection of the chassis, front and rear wishbones, suspension shock towers etc, for any broken parts that may need to be replaced. Then, take a screwdriver and box spanner and check each self tapping screw and nut for security, taking care not to over tighten.

   Next, for those Team Associated models with oil filled shock absorbers, remove them from the chassis and dismantle the coil springs. The damper shafts should push in and pull out with a smooth action. If you feel a jolt as you change direction, this means the oil has leaked out and must be topped up. At the same time, change the O-Ring seals to prevent more leakage. Also check the damper shafts for damage. If they are scratched, change them as soon as possible.

   If the body shell of your Team Associated TQ10 is broken, ripped or damaged in any way, this can be easily repaired with rubber solution glue. Also, for added protection and if available for your TQ10 model, fit an under guard to stop dirt and gravel entering the chassis.

Titanium Turnbuckles
   Examine the drive shafts for wear and replace as required. If possible, change them for titanium. The steel shafts wear and bend too easily.

   If you intend to race your TQ10 Buggy model at a competitive level, I would also recommend you obtain and fit titanium pivot shafts, turnbuckles, tie rods and steering rods.

   The gearbox of your used Buggy should be opened up to check for gear wear and lubrication. A thin coat of grease is often used on internal gears and although this is fine for basic running around on the back yard, if you intend to race your Buggy at a higher level, this should be removed and replaced with racing oil (ZX1 or Teflon Oil). Of course, this should be reapplied after each race meeting.

Spur Gears
   Gears are a weakness on all Buggy RC models. Head on collisions can easily damage the gear teeth on nylon and plastic spur gears. Heavy impacts can also loosen the nuts or self tapping screws that hold the Electric Motor in Position, allowing the pinion gear to pull out of mesh slightly and rip the tops off the teeth on your spur gear. To minimise this possibility, fit bolts with locking nuts to the Electric Motor mount and remember to check them for security after every two or three runs.

   Ball joints always cause problems. For top level Electric Buggy racing, the plastic ball connectors should be checked and if deemed necessary changed after every meeting. A simple thing like a loose fitting connector popping off could easily end your race, so better safe than sorry.

Servo Gears
   The TQ10 steering servo is also prone to damage. In high speed crash situations, the fragile gear teeth of the servo can be broken off, rendering your expensive servo useless, so be sure to obtain a good quality "Servo Saver". Check out my Servo Information article.

   If body roll on your Team Associated TQ10 is a problem, handling can be improved with the use of stabilizers, anti roll or sway bars, stiffer tuning springs and, or, thicker silicone oil in the dampers.

Ball Bearings
   If your used Team Associated Buggy came with plastic and sintered brass bushings (ring type bearings), check the shafts that run in them for wear. Dust and grit can get into these bearings and abrade the shafts. Therefore, you should replace them all with shielded ball bearings. If the model has been run with ring type bearings, you may have to change all the axles and driveshafts. For more information, take a look at my article, How to get the best from your Bearings.

   Finally, good luck with your TQ10 model and good racing.


For More on how to Setup your Buggy, check out my Hints and Tips page.


^ TOP ^












Manufacturers and Brands Catalogued and Listed by RC-Scrapyard.


   At present, the RC Model Manufacturers, Brands and Distributors covered by us are: ABC Hobby, Academy, Acme Racing, Agama Racing, Amewi, Ansmann Racing, ARRMA, Team Associated, Atomic RC, Axial, AYK, Bolink, BSD Racing, Capricorn, Carisma, Carson, Caster Racing, Cen, Corally, Custom Works, Durango, Duratrax, ECX - Electrix, Exceed RC, FG Modellsport, FS-Racing, FTX, Fujimi, Gmade, GS-Racing, Harm, HBX, Helion, Heng Long, Himoto Racing, Hirobo, Hitari, Hobao, Hong-Nor, Hot Bodies, HPI, HSP, Intech, Integy, Jamara, JQ Products, Kawada, Kyosho, Losi, LRP, Maisto, Mardave, Marui, Maverick, MCD Racing, Megatech, Mugen, New Bright, Nichimo, Nikko, Nkok, Ofna, Pro-Pulse, Protech, PTI, RC4WD, Redcat Racing, RJ-Speed, Robitronic, Schumacher, Seben, Serpent, Smartech, Sportwerks, Step-Up, Tamiya, Team-C Racing, Team Magic, Thunder Tiger, Tomy, Top Racing, Traxxas, Trinity, Tyco, Vaterra RC, Venom, VRX Racing, WLToys, X-Factory, Xmods, Xpress, Xray, XTM, Yankee RC, Yokomo, ZD Racing and Zipzaps.

   This is an ongoing project, with new and "lost in time" RC Model Brands being added as they are found and although most of those listed above have been covered in relative detail, some are still being researched and will be completed in the near future.


















Hints and Tips

Dampers

   Dampers, Shock Absorbers, Shocks call them what you will, they are one of the least understood, but most important tools you have for adjusting the handling characteristics of your RC model.

   In this article, I will endeavour to explain just what you can achieve by making simple tweaks to your shocks and how these tweaks can keep you ahead of your opposition on the track.

   In dictionary terms "Damper" is described as "A mechanical device to absorb the energy of sudden impulses." In plain language, they stop your car from bouncing all over the track.


So how do Dampers work?

   Basically what you have is a small amount of silicone oil contained in a sealed cylinder. Through the centre of that cylinder is a metal rod and on the end of that rod, a piston with a number of small holes in it. Pulling, or pushing the rod in and out of the cylinder, your will notice a certain amount of resistance as the oil is forced through the holes in the piston. To manipulate that resistance you have two options. You could use thicker or thinner oil, or change the size of the holes in the piston. So if you have thicker oil, or smaller holes, you have more resistance. Less viscous oil or larger holes, less resistance. This simple physical relationship, coupled with a good set of tuning springs, is all you need to set-up your car to beat the rest.

   Out on the race track, the main thing you want to avoid is your car bouncing around all over the place, sliding, or even rolling over when you negotiate a tight corner. To prevent this you need to make changes, but before you make those changes you need to consider what your problem is for that particular track. How your model reacts when cornering does it Under-steer? (Slide towards the outside of the corner) or Over-steer? (Turns towards the inside of the corner). Does it react differently when you exit the corner to how it did when you entered it?

   Once you have decided what your problem is, go to our "Set-Up" page linked below and follow the step by step instructions. But remember to only make ONE change at a time. If the first suggestion isn't enough to cure the problem, add the second and so on, until you find that perfect setting. Good luck and good racing.

For More Setup Information check out my Hints and Tips page.







Hints and Tips

Roll Center

   One of the least understood settings on RC model cars is concept of roll center. The simple definition of roll center is a point in space that the chassis rolls from side to side as the car maneuvers around a corner.

   To calculate roll center you have to consider things like the height of the axles, the inside and outside camber link positioning, the length of the suspension arms and the location of their inside pivot point. Sounds complicated doesn't it and in truth it is.

   On all RC model cars, most of the cars weight is above the chassis and the center of gravity of the car is not only from front to rear, but also from top to bottom. This point is called the "true" center of gravity and is the point around which the weight of the car will want to roll from side to side, but it is the roll center of the chassis that the chassis will actually roll around, not the center of gravity.

   Once you have determined the positions of roll center and center of gravity, you can calculate the "roll moment". It is this that determines how easily the chassis will roll from side to side.

   But what does all this mean? I hear you ask. Well, it gives you some insight to what changing the position of your camber links can do to the way your car handles.

   Lowering the outside camber links, lowers the roll center, so conversely, raising the outside link position raises the roll center.

   Lowering the inside camber link position raises roll center and raising the inside camber link position, lowers the roll center.

   Any of these adjustments will affect the "roll moment" and therefore you have some control of body roll.

   The length of the camber link bars affects the speed of roll center change as the car driver around corners. Longer links increase the rate of change. Shorter links decreases the rate of change.

   Adjustments to the roll center will change the way the car reacts in a number of ways.

   Lowering the front roll center gives more steering under acceleration, but the car is less responsive. Ideal for smooth high grip tracks, with long sweeping corners.

   Raising the front roll center provides less steering when accelerating out of the corner, but the car feels more responsive and is less prone to traction roll. Best for high grip twisty tracks.

   Lower rear roll center improves grip under acceleration, but reduced grip when breaking. Helpful to avoid traction roll as you enter the corner and tracks with low grip to increase traction.

   Higher rear roll center gives you less under acceleration, but the car is more responsive. Works for high grip twisty tracks to reduce traction roll.

For More Setup Information check out my Hints and Tips page.










On/Off Road
RC Models:

Radio
Equipment:

Accessories: