RCScrapyard ► Iconic Vintage Radio Controlled (RC) Model Car Archive ► Tamiya Ferrari F2012 - F104 - #58559 - Formula One
RCScrapyard Radio Controlled Models
Flags

Tamiya Ferrari F2012 - #58559 (Radio Controlled Model)

1/10 Scale Electric Formula One Car - F104 Chassis:

  Released by Tamiya on February 27, 2013, based on the F104 Chassis, this Formula One Radio Controlled model, is of the Ferrari F2012 that was driven by Fernando Alonso and Felipe Massa in the F1 World Championships.

Tamiya Ferrari F2012 - F104 Chassis - #58559 - 1:10 Electric Model F1

  Seven years after the excellent 4WD F201 chassis and fourteen years after the introduction of the F103RS, Tamiya have gone back to 2WD and produced a chassis design able to compete against the best.

  The twin deck FRP (Fibreglass Reinforced Plastic) chassis design provides a more rigid structure than its 2WD predecessors and a radically re-designed front end allows for the setting of two different camber angles.

  At the rear end, the cars suspension employs the usual friction plate and T-bar set up with a coil spring over friction damper. The gear case has been designed to be ground clearance adjustable to match the slick foam tire dimensions as they wear.

  The smooth action pressure plate ball differential remains, along with the steel axle shaft. The best part of this re-design for me is the re-positioning of the battery to a longitudinal position, vastly improving the centre of gravity and reducing body roll.

  To reduce costs, Tamiya use plastic and sintered brass bush type bearings for this model. If these are installed, when dust and grit get into them, they will abrade the shafts that spin in them. Therefore I recommend they be replaced by steel shielded ball bearings before first assembly.


      Rating: 44 Stars out of 5 Reviewed by: RCScrapyard     Manual.





Gas/Nitro Engines Body Shells Radio Transmitters etc Tires Wheels/Rims Electronic Speed Controllers Battery Packs / Chargers Electric Motors












Items For Sale:












Flags


Tamiya Ferrari F2012
Tamiya Ferrari F2012 - F104 - #58559 Chassis

Tamiya Ferrari F2012 - F104 Chassis
Tamiya Ferrari F2012 - F104 - #58559 Body Shell


General Information and Advice

   For those starting in Radio Controlled Racing, here are a few Hints and Tips: Firstly, buy a Kit not an RTR. That way, if something breaks you will have some idea how to fix it.

   Radio Controlled Model Cars are very fragile and easily broken. The main parts to protect are the Front Wishbones, Suspension Shock Towers, Dampers, Hub Carriers, Kingpins, Uprights and Toe in Blocks, so make sure you have a good strong front bumper and Lexan or Hard Plastic Body Shell and if available for your model, a protective under tray, to prevent grit and dust getting into any moving parts.

   The Steering Servo is also a weakness in high speed crash situations, so get yourself some good strong Servo Mount and Servo Saver. Also I would recommend Titanium Shafts, Turnbuckles, Tie Rods and pivot/steering shafts and if available for your model, lightweight Titanium Drive shafts, dog bones and CVD (Constant Velocity Drives). The standard steel types are far too easily bent.

   Gearing is another problem area on RC model cars. Head on collisions can easily break off gear teeth on Nylon/Plastic Spur Gears and even Bevel Gears inside the Gearbox. Heavy impacts can also loosen nuts and self taping screws that hold the Motor in Position, allowing the Pinion Gear to pull out of mesh slightly and rip the tops of the teeth on your Spur Gear. To avoid this to some degree, fit locking nuts and a new motor mount from time to time, so the self taping screws that hold the motor in position have less chance to come loose.

   Ball joints always cause problems. For top level Radio Controlled model car racing, the plastic ball connectors should be checked and if deemed necessary changed after every meeting. A simple thing like a loose fitting connector breaking free could easily end your race, so better safe than sorry.

   Many New car kits come with Nylon and Sintered Brass Ring type bearings. My advice is to discard these before initial installation and buy a good Hop-up set of Shielded Steel Ball Bearings. Or if you are serious about your racing, Teflon or Ceramic Bearings.

   One final piece of advice about the Setup of your Car. Keep the Centre of Gravity as low as possible. Ride Height is all important. For On Road Drift/Touring cars the Ride Height should be no more than 5mm, for Buggys, Trucks, Truggys and Monster Trucks, as low as possible depending on the track conditions. If Body Roll is a problem, handling can be improved with the use of Stabilizers, Anti roll or Sway Bars, stiffer Tuning Springs and, or thicker Silicon Oil in the Dampers. Also find somewhere to mount the Transponder as low in the Chassis as possible.

For Car Setup Information check out our Hints and Tips page.













^ TOP ^












Tamiya Buggys Tamiya Trucks Tamiya Monster Trucks Tamiya Rock Crawlers Tamiya Off Road Chassis Types Tamiya Touring Car Tamiya Drift Car Tamiya WRC Car Tamiya M Chassis
Tamiya Tractor Trucks Tamiya Touring Car Chassis Tamiya F1 Tamiya F1/Le Mans Chassis Types Tamiya Military Tamiya Tanks












Hints and Tips

Soldering Battery Packs

   Nicad and Nimh batteries sometimes come as six separate matched 1.2 volt cells. These of course have to be soldered to each other in series to produce either a side by side stick pack, or a two times three cell saddle pack.

   Special copper, or silver plated straps must be used to make up these packs and each strap must be prepared before attempting to solder it to the battery cell, by placing a blob of solder at each end of all the straps needed.

   A jig to hold the cells vertical and side by side is advisable. Using electrical solder, with a flux core (flux aids the flow and adhesion of the solder) heat your soldering iron to as hot as it will go. Then with the stick of solder touching on the end of the cell, touch it with the iron. What you want it to spread evenly on the central part of the pole of the cell. Count to 3 seconds. If it doesn't melt the solder in that time, your iron is not hot enough. Battery cells are notoriously very fragile and susceptible to the very high temperatures soldering requires. Anything longer than four or five seconds direct contact with the iron can cause damage to the crystal structure in the cell, so be wary.

   When you have solder on each end of each cell, line them up in the jig, positive to negative and dab a spot of flux on the soldered cells, then position your straps, with the solder coated side faced down, touching the solder on the end of the cell. Now place your hot iron on the strap. Heat will transfer through the strap and melt the solder on the two faces. Again, count to 3 and you should feel the strap drop slightly as the solder fuses with the solder on the cell. Repeat this for each cell on both sides to produce your desired configuration. Finally solder your two wires, previously prepared with connectors, to the pack. Do not solder wires with bare ends to your pack. If these wires were to touch and short out, you could effectively kill your expensive battery pack I use Red for positive and Black for negative, but so long as you know which is which electrical equipment does not like the battery to be connected the wrong way.

For More Setup Information check out my Hints and Tips page.



Hints and Tips

Keeping Notes

   If all you will ever do is go racing at your local track every week, then this article is not for you. However, if you ever look towards travelling around to different tracks around the country, or even the world, the value of keeping notes is all too obvious.

   Every time I raced in a regional or national competition meeting, I would make detailed notes, aided by a little local knowledge initially and later fine tuned to suit my own driving style.

   My experience now means there are few, if any outdoor tarmac tracks within a 300 mile radius I haven been to and my notes on motor, gearing, camber angles, shock settings, tire choice and what inserts work best for that particular track, amongst others, allow me to save valuable time on the finer points of car setup, that can be done in the warmth of my own home on the kitchen table days before the meeting, instead of the often crippling heat, or the arduous conditions inside a wind blown tent.

   There are lots of methods for making notes on setup. The easiest perhaps is to download the blank pages often supplied by your cars manufacturer with a line drawing of your car and spaces for you to fill in as to the setting you prefer. Great if each time you go to a particular track the conditions are always constant. Notes made on a cold windy day will be little use on a hot sunny days racing on the same track.

   Manufacturers setup pages for their top drivers can also be useful as a starting point, but you should never take that setup as being the best there could ever be.

   So, the first note you should make is of the weather conditions. The wind and its direction isn't really what I am talking about, although it can have an effect on your cars handling, it is not something you can change your setup to handle. Track temperature and humidity are the main things to note. Not the average for the day, but for each round of racing. And note what tires you used and how the car handled in each race. Detail everything that might be useful in the future, no matter how trivial.

   Note the motor used and the gearing. Check the temperature of the motor after the race, how much charge is left in the batteries. You may have won the race, but there is always room for improvement your competitors will be doing just that.

   Every bit of information you compile will be useful for the next time you visit that particular venue. Weather forecasts these days are far more accurate than they used to be, so the adage "fore warned is fore armed" fits the bill. Simply search through your notes and find a day you raced with similar conditions to those forecast and set up your car to suit. But don't stop there.

   The conditions may be the same as they were when you made your notes, but that doesn't mean you can't improve your setup. Your practice laps will soon prove if your previous setup was correct, or give you a basis for more fine tuning.

   If you want to be the best, you have to work at it. Success doesn't come easy. You can be the best driver around, but if your setup isn't perfect you will never step up onto the winners rostrum. My motto if you never try anything, you never do anything. And if you never do anything wrong, you aren't trying hard enough.

For More Setup Information check out my Hints and Tips page.









^ TOP ^


On/Off Road
RC Models:

Radio
Equipment:

Accessories: