RCScrapyard ► Iconic Vintage Radio Controlled (RC) Model Car Archive ► Team Associated RC12E.
RCScrapyard Radio Controlled Models
Flags

1/12 Scale Electric Pan Car:

Team Associated RC12E (Radio Controlled Model Review)


Navigation: Sitemap  ▶  Manufacturers  ▶  Team Associated  ▶  Team Associated Timeline

History, Info (and How To Set-up Tips) for the RC12E


  Introduced by Team Associated in 1978, the RC12e was successful in numerous ROAR National Championships and took the IFMAR World Championship in 1982.

  The 2WD FRP pan chassis was available in a wide range of kits (3000 - 3030) with a fixed axle design and a full set of ball bearings.

Team Associated RC12E - 1:12 Electric Pan Car
▼ Scroll Down for More Images ▼


  To race the Team Associated RC12E, it requires a high level of tuning for improved stability when cornering, to keep it on the track and give you more grip under acceleration. Even the smallest change in your cars settings can make a Big difference. Our simple to follow instruction chart will show how to attain the best Set-up for your personal requirements.

ebay









Gas/Nitro Engines Body Shells Radio Transmitters etc Tires Wheels/Rims Electronic Speed Controllers Battery Packs / Chargers Electric Motors












Items For Sale:






Flags

★ Team Associated RC12e Chassis ★
Team Associated RC12e Chassis

★ Team Associated RC12e Chassis ★
Team Associated RC12e Chassis


General Information and Advice

   For those starting in Radio Controlled Racing, here are a few Hints and Tips: Firstly, buy a Kit not an RTR. That way, if something breaks you will have some idea how to fix it.

   Radio Controlled Model Cars are very fragile and easily broken. The main parts to protect are the Front Wishbones, Suspension Shock Towers, Dampers, Hub Carriers, Kingpins, Uprights and Toe in Blocks, so make sure you have a good strong front bumper and Lexan or Hard Plastic Body Shell and if available for your model, a protective under tray, to prevent grit and dust getting into any moving parts.

   The Steering Servo is also a weakness in high speed crash situations, so get yourself some good strong Servo Mount and Servo Saver. Also I would recommend Titanium Shafts, Turnbuckles, Tie Rods and pivot/steering shafts and if available for your model, lightweight Titanium Drive shafts, dog bones and CVD (Constant Velocity Drives). The standard steel types are far too easily bent.

   Gearing is another problem area on RC model cars. Head on collisions can easily break off gear teeth on Nylon/Plastic Spur Gears and even Bevel Gears inside the Gearbox. Heavy impacts can also loosen nuts and self taping screws that hold the Motor in Position, allowing the Pinion Gear to pull out of mesh slightly and rip the tops of the teeth on your Spur Gear. To avoid this to some degree, fit locking nuts and a new motor mount from time to time, so the self taping screws that hold the motor in position have less chance to come loose.

   Ball joints always cause problems. For top level Radio Controlled model car racing, the plastic ball connectors should be checked and if deemed necessary changed after every meeting. A simple thing like a loose fitting connector breaking free could easily end your race, so better safe than sorry.

   Many New car kits come with Nylon and Sintered Brass Ring type bearings. My advice is to discard these before initial installation and buy a good Hop-up set of Shielded Steel Ball Bearings. Or if you are serious about your racing, Teflon or Ceramic Bearings.

   One final piece of advice about the Setup of your Car. Keep the Centre of Gravity as low as possible. Ride Height is all important. For On Road Drift/Touring cars the Ride Height should be no more than 5mm, for Buggys, Trucks, Truggys and Monster Trucks, as low as possible depending on the track conditions. If Body Roll is a problem, handling can be improved with the use of Stabilizers, Anti roll or Sway Bars, stiffer Tuning Springs and, or thicker Silicon Oil in the Dampers. Also find somewhere to mount the Transponder as low in the Chassis as possible.

▼ Scroll Down for More Articles and Advice ▼

Or, check out our RC Model Car Setup Guide

^ TOP ^












Manufacturers and Brands Catalogued and Listed by RC-Scrapyard.


   At present, the RC Model Manufacturers, Brands and Distributors covered by us are: ABC Hobby, Academy, Acme Racing, Agama Racing, Amewi, Ansmann Racing, ARRMA, Team Associated, Atomic RC, Axial, AYK, Bolink, BSD Racing, Capricorn, Carisma, Carson, Caster Racing, Cen, Corally, Custom Works, Durango, Duratrax, ECX - Electrix, Exceed RC, FG Modellsport, FS-Racing, FTX, Fujimi, Gmade, GS-Racing, Harm, HBX, Helion, Heng Long, Himoto Racing, Hirobo, Hitari, Hobao, Hong-Nor, Hot Bodies, HPI, HSP, Intech, Integy, Jamara, JQ Products, Kawada, Kyosho, Losi, LRP, Maisto, Mardave, Marui, Maverick, MCD Racing, Megatech, Mugen, New Bright, Nichimo, Nikko, Nkok, Ofna, Pro-Pulse, Protech, PTI, RC4WD, Redcat Racing, RJ-Speed, Robitronic, Schumacher, Seben, Serpent, Smartech, Sportwerks, Step-Up, Tamiya, Team-C Racing, Team Magic, Thunder Tiger, Tomy, Top Racing, Traxxas, Trinity, Tyco, Vaterra RC, Venom, VRX Racing, WLToys, X-Factory, Xmods, Xpress, Xray, XTM, Yankee RC, Yokomo, ZD Racing and Zipzaps.

   This is an ongoing project, with new and "lost in time" RC Model Brands being added as they are found and although most of those listed above have been covered in relative detail, some are still being researched and will be completed in the near future.


















Hints and Tips

Caster

   Caster is basically the angle the steering kingpins or steering pivot points, leans back in relation to the horizontal when viewed from the side of the chassis.

   To test the effectiveness of your cars caster, place your model on a flat surface, point the front wheels straight ahead and push the chassis over to one side to simulate body roll when cornering. You will notice that as the car leans over, all four wheels also lean over in the same direction. Tires provide the most grip when the wheels are perfectly vertical and the full width of each tire is flat on the ground. Body roll pushes the wheels past the vertical and reduces the amount of tire contact. Now, if you turn the front wheels as if cornering and again push the chassis over, you will see that in this position, the front wheels are now more vertical, giving you better ground contact and therefore improved grip.

   Another effect of caster can be seen by disconnecting your steering servo and pushing your car along the floor. Because of caster and the kingpins leaning back, your car will naturally roll straight ahead.

   Obviously, the more body roll your car induces, the more positive caster you need to counter it. Buggys, Trucks and Truggys, because of their high ride height and long dampers have more body roll and therefore require more positive caster than on road cars, with their low ride height and shorter dampers.

   If you consider a corner as having three parts: An entrance, middle and an exit. Caster influences each of them.

   With a high degree of positive caster, as you enter the corner and body roll is at its greatest, steering is better. In the middle section, as body roll reduces, steering is less effective and some under-steer is induced, that will continue as you accelerate on corner exit.

   With a low amount of caster, steering response is improved in the middle section of low speed turns and will be more likely to over-steer on corner exit because of increased front end grip from the tires.

   Too little caster can result in difficult handling on corners and poor stability on the straights.

   Most modern RC model kits come with a standard caster setting that has been set for the best handling by the manufacturers. If you are new to the sport I would recommend you stick with this setting until you get a little more experience.

   Methods to adjust caster can vary from model to model. Sometimes it is as simple as moving the position of a plastic washer from one side of the top wishbone pivot bar to the other, or simply using a small clip. Models from some manufacturers often have specific caster blocks to change the angle and must be purchased separately.

For More Setup Information check out my Hints and Tips page.







Hints and Tips


How to Charge Rechargeable Batteries
for Radio Controlled Models

Ni-Cad (Nickel Cadmium) Batteries


1/  All Ni-Cad Batteries have to be Discharged soon after use. This is to avoid the dreaded "Memory" effect that on subsequent re-charges can cause a momentary drop in performance during a race. A simple discharger can be made from a car 12v bulb.

2/  Try to time your charge to complete just before a race. This will ensure maximum punch and duration. If a Ni-Cad is left to cool after a charge this advantage dissipates.

3/  The higher the charge current the more Punch the Ni-Cad battery will have (up to around 8 amps), however, the downside to this is a reduction in duration and effective battery life.

4/  Ni-Cad Batteries should be left to cool for about an hour after use before recharging. This will increase the effective life of the battery.


Ni-Mh (Nickel Metal Hydride) Batteries


1/  Never charge Ni-Mh batteries at a current higher than 4.5 amps. Although these batteries can give a higher voltage than Ni-Cad Batteries, they are much more sensitive and easy to damage if charged too quickly.

2/  Charging methods for Ni-Mh batteries can also be detrimental. The best I found was the "Slope" method. Avoid "Pulse" charging as this tends to effect crystal formation detrimentally and (it seems to kill them off) thus reduces duration over time.

3/  If using a temperature cut off charger on Ni-Mh batteries set to no more than 40 Degrees Centigrade. Any higher than this can damage the crystals.

4/  It is not necessary to discharge Ni-Mh Batteries. Unlike Ni-Cad batteries they do not develop a memory. Also, if they are totally discharged they sometimes will not charge straight after and need to be coaxed with a 10 minute trickle charge.

5/  Ni Mh Batteries can be recharged shortly after use without any discernable detrimental effects.


Li-Po (Lithium-Polymer) Batteries


1/  Li-Po batteries are a huge step forward in performance compared with Ni-Cad and Ni-Mh batteries. However, care has to be taken when charging. If certain procedures are not followed they could burst into flames or even explode, therefore I do not recommend Li-Po batteries for RC beginners.

2/  Li-Po batteries are more expensive and have a shorter effective life. Generally considered to be between 200 to 400 charge cycles compared to 1000+ for Ni-Cad and Ni-Mh.

3/  Consider a Battery pack listed as "2S 5000Mah 40c 2C".
"2S" is the number of cells in the pack, in this case 2 cells. Each cell provides around 3.7 Volts, so a 2S pack is around 7.4 Volts.
"5000Mah" (Mili-Amp-Hours) is the capacity. The amount of charge the pack can hold.
"40c" is the maximum Discharge rate. Which in our example would be calculated as 5000 (Mah) x 40 = 200000Ma (200 Amps).
"2C" is the maximum Charge rate. 1C being 5 Amps, so in our example 2 x 5 = 10 Amps.

4/  To safely charge your Li-Po Battery I would recommend a good Computerised charger, preferably one that can handle a Charge current of around 25A and always place the charging battery on a fireproof surface.

5/  Finally. NEVER leave your charging Li-Po battery unattended and NEVER EVER charge it above the recommended rate. When not in use, store with around 60% charge remaining in a fireproof box.


For More Setup Information check out my Hints and Tips page.









On/Off Road
RC Models:

Radio
Equipment:

Accessories: