RCScrapyard ► Iconic Vintage Radio Controlled (RC) Model Car Archive ► Tamiya Egress. ITEM: #58079
RCScrapyard Radio Controlled Models
Flags

Tamiya Egress - #58079 (Radio Controlled Model Review)

1/10 Scale Electric Buggy - AV Chassis:

  Released by Tamiya on June 29, 1989, the Egress is a descendant of the Avante, although not as sophisticated in design, it sports a simplified suspension and longer wheelbase.

Tamiya Egress - #58079
▼ Scroll Down for More Images ▼


  The drive train is that of the original Avante but with ball differentials to front and rear and a one-way bearing in the middle. The Egress was built of superior quality materials, such as Graphite reinforced plastic chassis and towers, hi-cap dampers and titanium screws. The kit also included a full set of blue rubber sealed ball bearings.

  At the time of its release, the Egress was a top of the range model, it was sturdy and despite all the titanium and graphite parts was quite weighty, which some saw as a disadvantage as speed was compromised. However, others found the weight gave good stability and improved handling. Not really a car for beginners, but it was fun to drive.

  Out of the box, this car had all the "Hop-ups" from the outset, but the cars fragility meant keeping large amounts of parts and spares to hand, which were very expensive.

  Collectors find this buggy well worth collecting and because of its sleek good looks is great to display.


      Rating: 3.53.5 Stars out of 5 Reviewed by: RCScrapyard     Manual.

ebay




Gas/Nitro Engines Body Shells Radio Transmitters etc Tires Wheels/Rims Electronic Speed Controllers Battery Packs / Chargers Electric Motors












Items For Sale:











Flags

Tamiya Egress #58079 - Chassis
Tamiya Egress #58079 Chassis
Tamiya Egress #58079
Tamiya Egress #58079 Body Shell

Buying a Used Tamiya Egress
Buggy (and What to look for)


   Buying a used Tamiya Egress Electric Buggy, or any used RC Model, has a number of advantages. It is generally cheaper than new, ready built and may come with a variety of expensive hop-ups already installed. Cheap, pre-loved bargains are always becoming available. However, depending on the age of your purchase, it may need a little tender loving care before you can take it out on the back yard.

   The one thing you will always need is an instruction manual. If not supplied with your purchase, they can often be downloaded from the Tamiya website, or purchased separately on eBay. With an instruction manual, any problems with your model Buggy you may discover can easily be fixed.

Dampers
   When you receive your used Tamiya Buggy, make a general visual inspection of the chassis, front and rear wishbones, suspension shock towers etc, for any broken parts that may need to be replaced. Then, take a screwdriver and box spanner and check each self tapping screw and nut for security, taking care not to over tighten.

   Next, for those Tamiya models with oil filled shock absorbers, remove them from the chassis and dismantle the coil springs. The damper shafts should push in and pull out with a smooth action. If you feel a jolt as you change direction, this means the oil has leaked out and must be topped up. At the same time, change the O-Ring seals to prevent more leakage. Also check the damper shafts for damage. If they are scratched, change them as soon as possible.

   If the body shell of your Tamiya Egress is broken, ripped or damaged in any way, this can be easily repaired with rubber solution glue. Also, for added protection and if available for your Egress model, fit an under guard to stop dirt and gravel entering the chassis.

Titanium Turnbuckles
   Examine the drive shafts for wear and replace as required. If possible, change them for titanium. The steel shafts wear and bend too easily.

   If you intend to race your Egress Buggy model at a competitive level, I would also recommend you obtain and fit titanium pivot shafts, turnbuckles, tie rods and steering rods.

   On Belt driven models, the Drive Belts need checking at regular intervals for wear, tension and damage. If deemed necessary, adjust the tensioning pulley until the belt can be depressed in the centre by no more than around 5mm. If the belt was slack, also examine the drive pulleys for wear. The teeth should provide a well seated fit for the belt teeth and not be rounded on the corners. If the belt teeth do not fit snugly, change the pulleys as soon as possible. For top level racing it may be prudent to replace all belts and pulleys after each race meeting.

   For Gear driven models, the gearbox of your used Buggy should be opened up to check for gear wear and lubrication. A thin coat of grease is often used on internal gears and although this is fine for basic running around on the back yard, if you intend to race your Buggy at a higher level, this should be removed and replaced with racing oil (ZX1 or Teflon Oil). Of course, this should be reapplied after each race meeting.

Spur Gears
   Gears are a weakness on all Buggy RC models. Head on collisions can easily damage the gear teeth on nylon and plastic spur gears. Heavy impacts can also loosen the nuts or self tapping screws that hold the Electric Motor in Position, allowing the pinion gear to pull out of mesh slightly and rip the tops off the teeth on your spur gear. To minimise this possibility, fit bolts with locking nuts to the Electric Motor mount and remember to check them for security after every two or three runs.

   Ball joints always cause problems. For top level Electric Buggy racing, the plastic ball connectors should be checked and if deemed necessary, changed after every meeting. A simple thing like a loose fitting connector popping off, could easily end your race, so better safe than sorry.

Servo Gears
   The Egress steering servo is also prone to damage. In high speed crash situations, the fragile gear teeth of the servo can be broken off, rendering your expensive servo useless, so be sure to obtain a good quality "Servo Saver". Check out my Servo Information article.

   If body roll on your Tamiya Egress is a problem, handling can be improved with the use of stabilizers, anti roll or sway bars, stiffer tuning springs and, or, thicker silicone oil in the dampers.

Ball Bearings
   If your used Tamiya Buggy comes with plastic and sintered brass bushings (ring type bearings), check the shafts that run in them for wear. Dust and grit can get into these bearings and abrade the shafts. Therefore, you should replace them all with shielded ball bearings. If the model has been run with ring type bearings, you may have to change all the axles and driveshafts. For more information, take a look at my article, How to get the best from your Bearings.

   Finally, good luck with your Egress model and good racing.




▼ Scroll Down for More Articles and Advice ▼

Or, check out our RC Model Car Setup Guide














^ TOP ^












Tamiya Buggys Tamiya Trucks Tamiya Monster Trucks Tamiya Rock Crawlers Tamiya Off Road Chassis Types Tamiya Touring Car Tamiya Drift Car Tamiya WRC Car Tamiya M Chassis
Tamiya Tractor Trucks Tamiya Touring Car Chassis Tamiya F1 Tamiya F1/Le Mans Chassis Types Tamiya Military Tamiya Tanks












Hints and Tips


Electric Motors for RC Models

Winds and Turns

Q/  What does 15x2 or 17x3 mean?
A/  The first number relates to the number of times the wires are wound round each of the 3 armature segments, the second number relates to the number of wires side by side. So a 15x2 would have 2 wires laid side by side and wrapped around each segment 15 times.

Q/  What is the difference in performance between a Low Turn motor (eg 11x1) and a High Turn motor (eg 27x1)?
A/  A Motor with Less Turns like an 11x1 means high current draw from the batteries which corresponds to less runtime, but More Power (Torque or Punch) Best for tracks with lots of corners and short straights where fast acceleration is needed. (use a small pinion)
Motors with More Turns like a 27x1 give you More runtime, but Less Power. So you get a smoother response and are therefore easier to drive. Better for less experienced drivers and Long straight, sweeping corner tracks. (with a large pinion) This is correct for Brushed, Modified and Stock Motors as well as Brushless Motors.

Q/  How do the number of winds effect a motor?
A/  A Motor with More Winds (number of wires eg 13x5) is less demanding on the battery and smoother in acceleration. Best for low grip, slippery tracks.
A Low Wind Motor (eg 11x1) is more punchy and can be difficult to handle. Best on high grip, hot weather Tarmac, or indoor carpet, high acceleration, low speed tracks.

Advance and Retard

Q/  What is Advance and Retard?
A/  On the Endbell of a Modified Motor (where the brushes fit) you will find two screws that hold the Endbell to the Can. If these screws are slackened off slightly the Endbell can then be twisted either Clockwise (Advance) or Anticlockwise (Retard). On Sensorless Brushless Motors this adjustment can generally be made in a similar way (although there are some Brushless Motors that have fixed timing for Spec level racing). Sensored Motors can be adjusted via the ESC.

Q/  What does "Advancing" the Endbell position do?
A/  Advancing the Endbell Reduces runtime, increases Punch (acceleration) and RPM to give a higher top speed.
On the down side, for Brushed Motors, the brushes wear faster and the increased current draw creates more arcing thus increased heat and Commutator (Comm) wear. Brushless Motors can lose some efficiency at the end of a race because of overheating due to increased current draw.

Q/  What does "Retarding" the Endbell position do?
A/  On both Brushed and Brushless Motors, Retarding the Endbell Increases runtime, decreases Punch (acceleration) and RPM to give a lower top speed and for Brushed Motors, brush wear and Commutator (Comm) wear is reduced.

Brushed Motor Basics

Q/  What is the effect of hard and soft Brushes?
A/  Basically, Hard brushes give a lower current draw, so consequently give longer run times and lower torque so less punch (acceleration)
Soft Brushes on the other hand increase current draw thus give higher torque and increased acceleration. Of course the down side of this is that Soft brushes wear much faster and must be changed more often. (I change mine when they get to around 5mm)

Q/  How does changing the brush spring change the motor?
A/  If you fit Stiffer Brush Springs your motor will have More power at low revs and also a lower top speed. I only ever fit stiff springs on bumpy tracks to reduce brush bounce.
Weaker springs reduce power but increase RPM so give less acceleration but a higher top speed. Good for long, sweeping, smooth tracks, where you can carry good speed through the corners.

For More Setup Information check out my Hints and Tips page.



Hints and Tips

Gearing to Win

   Just because you have the latest model, the best available batteries, the most powerful electric motor or nitro engine, doesn't mean you will go out and win everything in sight. The fastest car on the track is rarely the one that wins, it's the one that can accelerate out of corners under control and remains consistent and efficient from the start to the end of a race.

   In days gone bye, all you had to consider was the number of mili amp hours (Mah) in your battery and the current draw of your high powered motor. Gearing for a five minute race was a balancing act. But with the development of the new high capacity batteries, brushless motors and smart ESC, all that changed. Now, gearing is more of a matter of what suits your driving style and how quick your reflexes are on the sticks, the trigger and steer wheel of your transmitter. So, where do you start?

   At your local club track, you quickly find the right combination and set-up for your car by talking to the more experienced members. After a while, as your knowledge grows, tweaking a few things here and there can give you that small edge to keep you competitive. So, it follows that on tracks you don't know, you should talk to the locals there, who may be racing a similar model to your own and adjust your set-up to suit.

   Gearing correctly for any given track is absolutely crucial if your car is to be competitive.

   Too high a gearing may get you in front at the start of a race, but as your motor begins to overheat and lose efficiency, that initial advantage will soon be lost.

   Too low a gearing and although it may get you past your opposition accelerating out of the corners, you will loose that place again on the fast straights. Gearing low will always get you to the end of the race, but it will hardly ever get you on the winner's rostrum.

   Having said that, on tracks you don't know, initially it's always best to err on the side of low gearing. For your first practice laps on a new track, choose a motor that has a reasonable current draw and with a fully charged battery, try a race length run, learn the corners what line to enter and exit, where you can accelerate to overtake and how fast you need to be on the straights to keep up (not overtake) the opposition. After your practice race, check the remaining capacity in your batteries and the temperature of your motor, (keep records of each motor and discover at what temperature a specific motor loses efficiency all this helps when selecting the right gearing.)

   Armed with this knowledge you can then consider how to alter your gearing.

   If the motor is cool (in comparison) and your battery has ample remaining charge, try a larger pinion perhaps one or two teeth more. Don't overdo it.

   An overly hot motor and low remaining capacity battery speaks for itself. The race timed practice run should have given you an insight to this problem. Obviously, in this instance you must use a smaller, less teeth pinion, or start again with a milder, less powerful motor.

   If the motor is hot, but not too hot, the battery has ample remaining charge and you did not notice any drop in efficiency towards the end of your practice run, then you are close to the optimum set up for that particular motor.

   Depending on how competitive that set-up is, you can stick with it, maybe tweak a tooth up or down, or repeat the process with a different motor to get you where you want to be.

For More Setup Information check out my Hints and Tips page.









^ TOP ^


On/Off Road
RC Models:

Radio
Equipment:

Accessories: