RCScrapyard ► Iconic Vintage Radio Controlled (RC) Model Car Archive ► Tamiya Egress 2013. ITEM: #58583
RCScrapyard Radio Controlled Models
Flags

Tamiya Egress 2013 - #58583 (Radio Controlled Model Review)

1/10 Scale Electric Buggy - AV Chassis:

  Released by Tamiya on November 13, 2013, this is a re-release of the Tamiya Egress that was originally released in 1989. Based on the Avante, The Egress uses a simplified suspension system and has a longer wheelbase.

Tamiya Egress 2013 - #58583
▼ Scroll Down for More Images ▼


  When first released, the Egress was a top of the range model, but despite all the titanium and graphite parts, was quite weighty, which some saw as a disadvantage as speed was compromised. However, others found the weight gave good stability and improved handling. Not really a car for beginners, but it was fun to drive.

  Out of the box, new 2013 Egress has a number of "Hop-ups" provided and a few newly designed parts, including the ball differentials and universal joints to give smooth power transfer.

  In its day, the original Egress was a race winner, but was considered fragile and could be expensive on parts. Today, the Egress may struggle to keep up with the wide range of highly sophisticated competition now available.

  To get the best from the Tamiya Egress, it needs to be fine tuned to handle jumps and bumps under control and have enough grip to hug the corners at high speed, without slipping off the track. Small adjustments can make a Big difference and our simple to understand, step by step procedure, will show you how to achieve the best Set-up for your driving style.


      Rating: 3.53.5 Stars out of 5 Reviewed by: RCScrapyard     Manual.

ebay




Gas/Nitro Engines Body Shells Radio Transmitters etc Tires Wheels/Rims Electronic Speed Controllers Battery Packs / Chargers Electric Motors












Items For Sale:











Flags

Tamiya Egress 2013 #58583 - Chassis
Tamiya Egress 2013 #58583 Chassis
Tamiya Egress 2013 Chassis
Tamiya Egress 2013 Chassis

Buying a Used Tamiya Egress
Buggy (and What to look for)


   Buying a used Tamiya Egress Electric Buggy, or any used RC Model, has a number of advantages. It is generally cheaper than new, ready built and may come with a variety of expensive hop-ups already installed. Cheap, pre-loved bargains are always becoming available. However, depending on the age of your purchase, it may need a little tender loving care before you can take it out on the back yard.

   The one thing you will always need is an instruction manual. If not supplied with your purchase, they can often be downloaded from the Tamiya website, or purchased separately on eBay. With an instruction manual, any problems with your model Buggy you may discover can easily be fixed.

Dampers
   When you receive your used Tamiya Buggy, make a general visual inspection of the chassis, front and rear wishbones, suspension shock towers etc, for any broken parts that may need to be replaced. Then, take a screwdriver and box spanner and check each self tapping screw and nut for security, taking care not to over tighten.

   Next, for those Tamiya models with oil filled shock absorbers, remove them from the chassis and dismantle the coil springs. The damper shafts should push in and pull out with a smooth action. If you feel a jolt as you change direction, this means the oil has leaked out and must be topped up. At the same time, change the O-Ring seals to prevent more leakage. Also check the damper shafts for damage. If they are scratched, change them as soon as possible.

   If the body shell of your Tamiya Egress is broken, ripped or damaged in any way, this can be easily repaired with rubber solution glue. Also, for added protection and if available for your Egress model, fit an under guard to stop dirt and gravel entering the chassis.

Titanium Turnbuckles
   Examine the drive shafts for wear and replace as required. If possible, change them for titanium. The steel shafts wear and bend too easily.

   If you intend to race your Egress Buggy model at a competitive level, I would also recommend you obtain and fit titanium pivot shafts, turnbuckles, tie rods and steering rods.

   On Belt driven models, the Drive Belts need checking at regular intervals for wear, tension and damage. If deemed necessary, adjust the tensioning pulley until the belt can be depressed in the centre by no more than around 5mm. If the belt was slack, also examine the drive pulleys for wear. The teeth should provide a well seated fit for the belt teeth and not be rounded on the corners. If the belt teeth do not fit snugly, change the pulleys as soon as possible. For top level racing it may be prudent to replace all belts and pulleys after each race meeting.

   For Gear driven models, the gearbox of your used Buggy should be opened up to check for gear wear and lubrication. A thin coat of grease is often used on internal gears and although this is fine for basic running around on the back yard, if you intend to race your Buggy at a higher level, this should be removed and replaced with racing oil (ZX1 or Teflon Oil). Of course, this should be reapplied after each race meeting.

Spur Gears
   Gears are a weakness on all Buggy RC models. Head on collisions can easily damage the gear teeth on nylon and plastic spur gears. Heavy impacts can also loosen the nuts or self tapping screws that hold the Electric Motor in Position, allowing the pinion gear to pull out of mesh slightly and rip the tops off the teeth on your spur gear. To minimise this possibility, fit bolts with locking nuts to the Electric Motor mount and remember to check them for security after every two or three runs.

   Ball joints always cause problems. For top level Electric Buggy racing, the plastic ball connectors should be checked and if deemed necessary, changed after every meeting. A simple thing like a loose fitting connector popping off, could easily end your race, so better safe than sorry.

Servo Gears
   The Egress steering servo is also prone to damage. In high speed crash situations, the fragile gear teeth of the servo can be broken off, rendering your expensive servo useless, so be sure to obtain a good quality "Servo Saver". Check out my Servo Information article.

   If body roll on your Tamiya Egress is a problem, handling can be improved with the use of stabilizers, anti roll or sway bars, stiffer tuning springs and, or, thicker silicone oil in the dampers.

Ball Bearings
   If your used Tamiya Buggy comes with plastic and sintered brass bushings (ring type bearings), check the shafts that run in them for wear. Dust and grit can get into these bearings and abrade the shafts. Therefore, you should replace them all with shielded ball bearings. If the model has been run with ring type bearings, you may have to change all the axles and driveshafts. For more information, take a look at my article, How to get the best from your Bearings.

   Finally, good luck with your Egress model and good racing.




▼ Scroll Down for More Articles and Advice ▼

Or, check out our RC Model Car Setup Guide














^ TOP ^












Tamiya Buggys Tamiya Trucks Tamiya Monster Trucks Tamiya Rock Crawlers Tamiya Off Road Chassis Types Tamiya Touring Car Tamiya Drift Car Tamiya WRC Car Tamiya M Chassis
Tamiya Tractor Trucks Tamiya Touring Car Chassis Tamiya F1 Tamiya F1/Le Mans Chassis Types Tamiya Military Tamiya Tanks












Information and Advice

Electronic Speed Controllers

History:

   ESC were originally developed to be used in conjunction with brushed 27T stock and modified motors in the late 1970s, early 1980s. Compared to modern day Controllers, they were Bulky and heavy, constructed using basic resistors, rheostats, capacitors and transistors, crammed together on a simple circuit board, to provide stepped but smooth acceleration when compared to the old mechanical, servo operated sweeper Speed Controllers. An Electronic Switch to change the direction of current flow was used on some of these early ESC to give reverse operation. Although they were a vast improvement on the old mechanical speedos of the time, they were expensive, jerky to control and prone to burn out if not carefully looked after.

   As new technology became available, improvements were slowly made and with the introduction of the new FET (Field Effect Transistors) and some basic mass produced silicon chips, ESC were made smaller and their reliability gradually improved.

   By the mid 1990s, "regenerative breaking" was developed. This meant that energy that would have been lost slowing down the car by effectively turning the motor into a generator, was harvested and put back into the battery. This of course was long before F1 had KERS (Kinetic Energy Recovery System) and adjustable anti lock breaking was introduced.

   Brushless Motors came to RC in the late 1990s early 2000s, which required a new breed of ESC to be developed to fully utilise the new technology. Ni-Cad Rechargeable Batteries were superseded by Ni-Mh and more recently Li-Po Batteries which provided higher Current output for the ESC to regulate. The latest ESC now use sensors to manage the motor and can be adjusted remotely to suit varying conditions.


Brushed Motor ESC.

   The "Silver Can" Stock Motors that come in a wide number of RC model kits are often accompanied by a 5 Amps to 20 Amps ESC. However, if you want to upgrade to a more powerful Modified Brushed Motor, 20 Amps may not be enough, so you will have to buy a something well over 20 Amps depending on the number of turns of your motor. As a rough guide, a 9 Single has a much higher current requirement than 20 Single.

Brushless Motor ESC.

   ESC for Brushless Motors are in no way compatible with brushed motors. The DC (Direct Current) input from the battery, on brushless ESC is transformed into three phase AC (Alternating Current). Each "phase" connecting three wires on the Brushless motor. By changing the frequency of the output wave the motor will spin faster for acceleration or slower for breaking. Reverse is simply achieved by changing over any two of the three "phases".
   At the time this article was written, Brushless ESC range from 3 Amps to around 300 Amps.
   For beginners I recommended you buy an ESC and Motor Combo, that way you can be sure the ESC Current rating is correct for the Motor.


For More Setup Information check out my Hints and Tips page.



Hints and Tips


Rechargeable Batteries
for RC Models


   At the time this article was written, there are four types of Rechargeable Batteries that are commonly in use of Radio Controlled Models.
Ni-Cad (Nickel Cadmium) Batteries have been around the longest. My first stick battery, purchased way back in 1987 was rated at 1200Mah (Mili Amp Hours) and with a silver can 27 Turn motor my Tamiya Boomerang would run around in the back yard for a good seven minutes before slowly coming to a stop. Ni-Cad development continued until around 1998 to a maximum rating of around 2000Mah and matchers pack builders and battery technicians were able to put together six cell packs with voltages approaching 7.4 Volts, to give those that could afford them, an edge over the rest.

   Ni-Mh (Nickel Metal Hydride) Batteries came along in the late 1990s and by the year 2000 were available at ratings up to 3000Mah. Again, matchers and pack builders worked hard to provide the ardent racer with packs to provide that little bit of extra power and ESC manufacturers also chipped in with improved controllers to take full advantage of this new technology.
   Now the problem wasn't gearing the car to get to the end of the race using the available battery power, but to find the brushed motor that could handle gear setting that provided the speed and acceleration without the motor overheating and wearing the commutator too much so it needed a skim after every 2 runs. My favourite at that time was the 9 Double.

   More recently, Li-Po (Lithium-Polymer) Batteries have appeared on the scene, providing are a huge step forward in performance when compared with Ni-Cad and Ni-Mh batteries. However, Li-Po Batteries are much more expensive than previous battery types, have a shorter effective life of between 200 and 400 charge cycles, compared to well over 1000 charge cycles for Ni-Cad and Ni-Mh and a high degree of care has to be taken when charging Li-Po batteries. They have been known to burst into flames or even explode, for this reason I do not recommend Li-Po batteries for RC beginners.
   Another problem with Li-Po packs is they are physically bigger in size, so for those with older "Vintage" models, they may not fit into the provided space for the battery on the chassis.

   The latest development in battery technology for RC are Li-Ion. Originally produced for Laptops, Ipods, Tablets and the like, they are now available for RC models. Much like Li-Po for price and charge cycle life, the power and capacity is a moderate improvement, but for me, at the moment, not worth the expense.

   One final word of warning. NEVER leave your charging Li-Po or Li-Ion battery unattended when being charged and NEVER above the recommended charge rate. After use, store each battery with about 60% charge remaining and always in a fireproof bag.


For More Setup Information check out my Hints and Tips page.







^ TOP ^


On/Off Road
RC Models:

Radio
Equipment:

Accessories: