RCScrapyard ► Iconic Vintage Radio Controlled (RC) Model Car Archive ► Tamiya Ford Mondeo BTCC. ITEM #58143 FF01.
RCScrapyard Radio Controlled Models
Flags

Tamiya Ford Mondeo BTCC - #58143 (Radio Controlled Model Review)

1/10 Scale Electric Touring Car - FF-01 Chassis:

  Released by Tamiya on September 20, 1994, this FF-01 Chassis based electric RC model, is of the Ford Mondeo that New Zealand born Paul Radisich drove to 3rd Place overall, in the 1993 British Touring Car Championship (BTCC). The lightweight Lexan polycarbonate body shell in this kit accurately recreates the cars racing lines. Decals of the Bailey ICS livery are included in the kit.

Tamiya Ford Mondeo BTCC - #58143 FF01
▼ Scroll Down for More Images ▼


  Based on the TA-02 chassis (and does share some of its parts) the FF-01 was first introduced in 1993 and was an instant success for those looking for a realistic Front Wheel Drive experience.

  The kit comes with the plastic and sintered brass bushings that if installed, when dust and grit get into them, will wear into the shafts that run in them. These should be discarded and replaced by steel shielded ball bearings.

  To drive, the FF-01 is not the easiest out of the box, but with a few simple tweaks, handling can be much improved. Under-steer for some was a problem, but with the right tuning springs and oil weight this can easily be overcome.

  In conclusion, a fun car to drive but could be a bit of a handful for a beginner.


      Rating: 3.53.5 Stars out of 5 Reviewed by: RCScrapyard     Manual.

ebay




Gas/Nitro Engines Body Shells Radio Transmitters etc Tires Wheels/Rims Electronic Speed Controllers Battery Packs / Chargers Electric Motors












Flags

Tamiya Ford Mondeo BTCC #58143 FF01 - Chassis
Tamiya Ford Mondeo BTCC #58143 FF01 Chassis
Tamiya Ford Mondeo BTCC #58143 FF01
Tamiya Ford Mondeo BTCC #58143 FF01 Body Shell

Buying a Used Tamiya Ford Mondeo
Touring Car (and What to look for)


   Buying a used Tamiya Ford Mondeo Electric Touring Car, or any used RC Model, has a number of advantages. It is generally cheaper than new, ready built and may come with a variety of expensive hop-ups already installed. Cheap, pre-loved bargains are always becoming available. However, depending on the age of your purchase, it may need a little tender loving care before you can take it out on the back yard.

   The one thing you will always need is an instruction manual. If not supplied with your purchase, they can often be downloaded from the Tamiya website, or purchased separately on eBay. With an instruction manual, any problems with your model Touring Car you may discover, can easily be fixed.

Dampers
   When you receive your used Tamiya Touring Car, make a general visual inspection of the chassis, front and rear wishbones, suspension shock towers etc, for any broken parts that may need to be replaced. Then, take a screwdriver and box spanner and check each self tapping screw and nut for security, taking care not to over tighten.

   Next, for those Tamiya models with oil filled shock absorbers, remove them from the chassis and dismantle the coil springs. The damper shafts should push in and pull out with a smooth action. If you feel a jolt as you change direction, this means the oil has leaked out and must be topped up. At the same time, change the O-Ring seals to prevent more leakage. Also check the damper shafts for damage. If they are scratched, change them as soon as possible.

   If the body shell of your Tamiya Ford Mondeo is broken, ripped or damaged in any way, this can be easily repaired with rubber solution glue. Also, for added protection and if available for your Ford Mondeo model, fit an under guard to stop dirt and gravel entering the chassis.

Titanium Turnbuckles
   Examine the drive shafts for wear and replace as required. If possible, change them for titanium. The steel shafts wear and bend too easily.

   If you intend to race your Ford Mondeo Touring Car model at a competitive level, I would also recommend you obtain and fit titanium pivot shafts, turnbuckles, tie rods and steering rods.

   On Belt driven models, the Drive Belts need checking at regular intervals for wear, tension and damage. If deemed necessary, adjust the tensioning pulley until the belt can be depressed in the centre by no more than around 5mm. If the belt was slack, also examine the drive pulleys for wear. The teeth should provide a well seated fit for the belt teeth and not be rounded on the corners. If the belt teeth do not fit snugly, change the pulleys as soon as possible. For top level racing it may be prudent to replace all belts and pulleys after each race meeting.

   For Gear driven models, the gearbox of your used Touring Car should be opened up to check for gear wear and lubrication. A thin coat of grease is often used on internal gears and although this is fine for basic running around on the back yard, if you intend to race your Touring Car at a higher level, this should be removed and replaced with racing oil (ZX1 or Teflon Oil). Of course, this should be reapplied after each race meeting.

Spur Gears
   Gears are a weakness on all Touring Car RC models. Head on collisions can easily damage the gear teeth on nylon and plastic spur gears. Heavy impacts can also loosen the nuts or self tapping screws that hold the Electric Motor in Position, allowing the pinion gear to pull out of mesh slightly and rip the tops off the teeth on your spur gear. To minimise this possibility, fit bolts with locking nuts to the Electric Motor mount and remember to check them for security after every two or three runs.

   Ball joints always cause problems. For top level Electric Touring Car racing, the plastic ball connectors should be checked and if deemed necessary, changed after every meeting. A simple thing like a loose fitting connector popping off, could easily end your race, so better safe than sorry.

Servo Gears
   The Ford Mondeo steering servo is also prone to damage. In high speed crash situations, the fragile gear teeth of the servo can be broken off, rendering your expensive servo useless, so be sure to obtain a good quality "Servo Saver". Check out my Servo Information article.

   If body roll on your Tamiya Ford Mondeo is a problem, handling can be improved with the use of stabilizers, anti roll or sway bars, stiffer tuning springs and, or, thicker silicone oil in the dampers.

Ball Bearings
   If your used Tamiya Touring Car comes with plastic and sintered brass bushings (ring type bearings), check the shafts that run in them for wear. Dust and grit can get into these bearings and abrade the shafts. Therefore, you should replace them all with shielded ball bearings. If the model has been run with ring type bearings, you may have to change all the axles and driveshafts. For more information, take a look at my article, How to get the best from your Bearings.

   Finally, good luck with your Ford Mondeo model and good racing.


▼ Scroll Down for More Articles and Advice ▼

Or, check out our RC Model Car Setup Guide














^ TOP ^












Tamiya Buggys Tamiya Trucks Tamiya Monster Trucks Tamiya Rock Crawlers Tamiya Off Road Chassis Types Tamiya Touring Car Tamiya Drift Car Tamiya WRC Car Tamiya M Chassis
Tamiya Tractor Trucks Tamiya Touring Car Chassis Tamiya F1 Tamiya F1/Le Mans Chassis Types Tamiya Military Tamiya Tanks












General Information and Advice

   For those starting in Radio Controlled Racing, here are a few Hints and Tips: Firstly, buy a Kit not an RTR. That way, if something breaks you will have some idea how to fix it.

   Radio Controlled Model Cars are very fragile and easily broken. The main parts to protect are the Front Wishbones, Suspension Shock Towers, Dampers, Hub Carriers, Kingpins, Uprights and Toe in Blocks, so make sure you have a good strong front bumper and Lexan or Hard Plastic Body Shell and if available for your model, a protective under tray, to prevent grit and dust getting into any moving parts.

   The Steering Servo is also a weakness in high speed crash situations, so get yourself some good strong Servo Mount and Servo Saver. Also I would recommend Titanium Shafts, Turnbuckles, Tie Rods and pivot/steering shafts and if available for your model, lightweight Titanium Drive shafts, dog bones and CVD (Constant Velocity Drives). The standard steel types are far too easily bent.

   Gearing is another problem area on RC model cars. Head on collisions can easily break off gear teeth on Nylon/Plastic Spur Gears and even Bevel Gears inside the Gearbox. Heavy impacts can also loosen nuts and self taping screws that hold the Motor in Position, allowing the Pinion Gear to pull out of mesh slightly and rip the tops of the teeth on your Spur Gear. To avoid this to some degree, fit locking nuts and a new motor mount from time to time, so the self taping screws that hold the motor in position have less chance to come loose.

   Ball joints always cause problems. For top level Radio Controlled model car racing, the plastic ball connectors should be checked and if deemed necessary changed after every meeting. A simple thing like a loose fitting connector breaking free could easily end your race, so better safe than sorry.

   Many New car kits come with Nylon and Sintered Brass Ring type bearings. My advice is to discard these before initial installation and buy a good Hop-up set of Shielded Steel Ball Bearings. Or if you are serious about your racing, Teflon or Ceramic Bearings.

   One final piece of advice about the Setup of your Car. Keep the Centre of Gravity as low as possible. Ride Height is all important. For On Road Drift/Touring cars the Ride Height should be no more than 5mm, for Buggys, Trucks, Truggys and Monster Trucks, as low as possible depending on the track conditions. If Body Roll is a problem, handling can be improved with the use of Stabilizers, Anti roll or Sway Bars, stiffer Tuning Springs and, or thicker Silicon Oil in the Dampers. Also find somewhere to mount the Transponder as low in the Chassis as possible.

For Car Setup Information check out our Hints and Tips page.

Hints and Tips


Rechargeable Batteries
for RC Models


   At the time this article was written, there are four types of Rechargeable Batteries that are commonly in use of Radio Controlled Models.
Ni-Cad (Nickel Cadmium) Batteries have been around the longest. My first stick battery, purchased way back in 1987 was rated at 1200Mah (Mili Amp Hours) and with a silver can 27 Turn motor my Tamiya Boomerang would run around in the back yard for a good seven minutes before slowly coming to a stop. Ni-Cad development continued until around 1998 to a maximum rating of around 2000Mah and matchers pack builders and battery technicians were able to put together six cell packs with voltages approaching 7.4 Volts, to give those that could afford them, an edge over the rest.

   Ni-Mh (Nickel Metal Hydride) Batteries came along in the late 1990s and by the year 2000 were available at ratings up to 3000Mah. Again, matchers and pack builders worked hard to provide the ardent racer with packs to provide that little bit of extra power and ESC manufacturers also chipped in with improved controllers to take full advantage of this new technology.
   Now the problem wasn't gearing the car to get to the end of the race using the available battery power, but to find the brushed motor that could handle gear setting that provided the speed and acceleration without the motor overheating and wearing the commutator too much so it needed a skim after every 2 runs. My favourite at that time was the 9 Double.

   More recently, Li-Po (Lithium-Polymer) Batteries have appeared on the scene, providing are a huge step forward in performance when compared with Ni-Cad and Ni-Mh batteries. However, Li-Po Batteries are much more expensive than previous battery types, have a shorter effective life of between 200 and 400 charge cycles, compared to well over 1000 charge cycles for Ni-Cad and Ni-Mh and a high degree of care has to be taken when charging Li-Po batteries. They have been known to burst into flames or even explode, for this reason I do not recommend Li-Po batteries for RC beginners.
   Another problem with Li-Po packs is they are physically bigger in size, so for those with older "Vintage" models, they may not fit into the provided space for the battery on the chassis.

   The latest development in battery technology for RC are Li-Ion. Originally produced for Laptops, Ipods, Tablets and the like, they are now available for RC models. Much like Li-Po for price and charge cycle life, the power and capacity is a moderate improvement, but for me, at the moment, not worth the expense.

   One final word of warning. NEVER leave your charging Li-Po or Li-Ion battery unattended when being charged and NEVER above the recommended charge rate. After use, store each battery with about 60% charge remaining and always in a fireproof bag.


For More Setup Information check out my Hints and Tips page.







^ TOP ^


On/Off Road
RC Models:

Radio
Equipment:

Accessories: