RCScrapyard ► Iconic Vintage Radio Controlled (RC) Model Car Archive ► Schumacher ProCat (Pro Cat).
RCScrapyard Radio Controlled Models
Flags

1/10 Scale Electric Buggy:

Schumacher ProCat - U409N (Radio Controlled Model Review)


Navigation: Sitemap  ▶  Manufacturers  ▶  Schumacher

History, Info (and How To Set-up Tips) for the Schumacher ProCat:


  1991 saw the introduction of the Schumacher ProCat - U409N - and in 1992, the model was upgraded and released as the ProCat SE (Special Edition) - U427F.

  In an effort to prevent broken front wishbones, the ProCat was designed with a system Schumacher termed "Crashback", where the front wishbones and shock mount were split and pivoted and three rubber tension bands were used to hold the assembly in the closed position. Consequently, if the ProCat was to crash, the tension bands would cushion the impact and save the wishbones from damage.

Schumacher ProCat
▼ Scroll Down for More Images ▼


  To race the Schumacher ProCat, you need to tweak and adjust all you can to give your car improved handling, stability and grip to ease around the curves and keep you on the track. One little setting change can transform your car into a world beater. Just follow our chart to attain the most favourable Set-up to suit your particular needs on any track.

ebay









Gas/Nitro Engines Body Shells Radio Transmitters etc Tires Wheels/Rims Electronic Speed Controllers Battery Packs / Chargers Electric Motors












Items For Sale:






Flags

★ Schumacher Pro-Cat ★
Schumacher Pro-Cat

★ Schumacher Pro-Cat Chassis ★
Schumacher Pro-Cat Chassis


Buying a Used Schumacher ProCat Buggy (and What to look for)


   Buying a used Schumacher ProCat Electric Buggy, or any used RC Model, has a number of advantages. It is generally cheaper than new, ready built and may come with a variety of expensive hop-ups already installed. Cheap, pre-loved bargains are always becoming available. However, depending on the age of your purchase, it may need a little tender loving care before you can take it out on the back yard.

   The one thing you will always need is an instruction manual. If not supplied with your purchase, they can often be downloaded from the Schumacher website, or purchased separately on eBay. With an instruction manual, any problems with your model Buggy you may discover can easily be fixed.

Dampers
   When you receive your used Schumacher Buggy, make a general visual inspection of the chassis, front and rear wishbones, suspension shock towers etc, for any broken parts that may need to be replaced. Then, take a screwdriver and box spanner and check each self tapping screw and nut for security, taking care not to over tighten.

   Next, for those Schumacher models with oil filled shock absorbers, remove them from the chassis and dismantle the coil springs. The damper shafts should push in and pull out with a smooth action. If you feel a jolt as you change direction, this means the oil has leaked out and must be topped up. At the same time, change the O-Ring seals to prevent more leakage. Also check the damper shafts for damage. If they are scratched, change them as soon as possible.

   If the body shell of your Schumacher ProCat is broken, ripped or damaged in any way, this can be easily repaired with rubber solution glue. Also, for added protection and if available for your ProCat model, fit an under guard to stop dirt and gravel entering the chassis.

Titanium Turnbuckles
   Examine the drive shafts for wear and replace as required. If possible, change them for titanium. The steel shafts wear and bend too easily.

   If you intend to race your ProCat Buggy model at a competitive level, I would also recommend you obtain and fit titanium pivot shafts, turnbuckles, tie rods and steering rods.

   Drive Belts need checking at regular intervals for wear, tension and damage. If deemed necessary, adjust the tensioning pulley until the belt can be depressed in the centre by no more than around 5mm. If the belt was slack, also examine the drive pulleys for wear. The teeth should provide a well seated fit for the belt teeth and not be rounded on the corners. If the belt teeth do not fit snugly, change the pulleys as soon as possible. For top level racing it may be prudent to replace all belts and pulleys after each race meeting.

Spur Gears
   Gears are a weakness on all Buggy RC models. Head on collisions can easily damage the gear teeth on nylon and plastic spur gears. Heavy impacts can also loosen the nuts or self tapping screws that hold the Electric Motor in Position, allowing the pinion gear to pull out of mesh slightly and rip the tops off the teeth on your spur gear. To minimise this possibility, fit bolts with locking nuts to the Electric Motor mount and remember to check them for security after every two or three runs.

   Ball joints always cause problems. For top level Electric Buggy racing, the plastic ball connectors should be checked and if deemed necessary changed after every meeting. A simple thing like a loose fitting connector popping off could easily end your race, so better safe than sorry.

Servo Gears
   The ProCat steering servo is also prone to damage. In high speed crash situations, the fragile gear teeth of the servo can be broken off, rendering your expensive servo useless, so be sure to obtain a good quality "Servo Saver". Check out my Servo Information article.

   If body roll on your Schumacher ProCat is a problem, handling can be improved with the use of stabilizers, anti roll or sway bars, stiffer tuning springs and, or, thicker silicone oil in the dampers.

Ball Bearings
   If your used Schumacher Buggy comes with plastic and sintered brass bushings (ring type bearings), check the shafts that run in them for wear. Dust and grit can get into these bearings and abrade the shafts. Therefore, you should replace them all with shielded ball bearings. If the model has been run with ring type bearings, you may have to change all the axles and driveshafts. For more information, take a look at my article, How to get the best from your Bearings.

   Finally, good luck with your ProCat model and good racing.


▼ Scroll Down for More Articles and Advice ▼

Or, check out our RC Model Car Setup Guide


^ TOP ^












Manufacturers and Brands Catalogued and Listed by RC-Scrapyard.


   At present, the RC Model Manufacturers, Brands and Distributors covered by us are: ABC Hobby, Academy, Acme Racing, Agama Racing, Amewi, Ansmann Racing, ARRMA, Team Associated, Atomic RC, Axial, AYK, Bolink, BSD Racing, Capricorn, Carisma, Carson, Caster Racing, Cen, Corally, Custom Works, Durango, Duratrax, ECX - Electrix, Exceed RC, FG Modellsport, FS-Racing, FTX, Fujimi, Gmade, GS-Racing, Harm, HBX, Helion, Heng Long, Himoto Racing, Hirobo, Hitari, Hobao, Hong-Nor, Hot Bodies, HPI, HSP, Intech, Integy, Jamara, JQ Products, Kawada, Kyosho, Losi, LRP, Maisto, Mardave, Marui, Maverick, MCD Racing, Megatech, Mugen, New Bright, Nichimo, Nikko, Nkok, Ofna, Pro-Pulse, Protech, PTI, RC4WD, Redcat Racing, RJ-Speed, Robitronic, Schumacher, Seben, Serpent, Smartech, Sportwerks, Step-Up, Tamiya, Team-C Racing, Team Magic, Thunder Tiger, Tomy, Top Racing, Traxxas, Trinity, Tyco, Vaterra RC, Venom, VRX Racing, WLToys, X-Factory, Xmods, Xpress, Xray, XTM, Yankee RC, Yokomo, ZD Racing and Zipzaps.

   This is an ongoing project, with new and "lost in time" RC Model Brands being added as they are found and although most of those listed above have been covered in relative detail, some are still being researched and will be completed in the near future.





















★ Schumacher ProCat Chassis ★
Schumacher ProCat Chassis


Hints and Tips


Rechargeable Batteries
for RC Models


   At the time this article was written, there are four types of Rechargeable Batteries that are commonly in use for Radio Controlled Models.
Ni-Cad (Nickel Cadmium) Batteries have been around the longest. My first stick battery, purchased way back in 1987 was rated at 1200Mah (Mili Amp Hours) and with a silver can 27 Turn motor my Tamiya Boomerang would run around in the back yard for a good seven minutes before slowly coming to a stop. Ni-Cad development continued until around 1998 to a maximum rating of around 2000Mah and matchers pack builders and battery technicians were able to put together six cell packs with voltages approaching 7.4 Volts, to give those that could afford them, an edge over the rest.

   Ni-Mh (Nickel Metal Hydride) Batteries came along in the late 1990s and by the year 2000 were available at ratings up to 3000Mah. Again, matchers and pack builders worked hard to provide the ardent racer with packs to provide that little bit of extra power and ESC manufacturers also chipped in with improved controllers to take full advantage of this new technology.
   Now the problem wasn't gearing the car to get to the end of the race using the available battery power, but to find the brushed motor that could handle gear setting that provided the speed and acceleration without the motor overheating and wearing the commutator too much so it needed a skim after every 2 runs. My favourite at that time was the 9 Double.

   More recently, Li-Po (Lithium-Polymer) Batteries have appeared on the scene, providing are a huge step forward in performance when compared with Ni-Cad and Ni-Mh batteries. However, Li-Po Batteries are much more expensive than previous battery types, have a shorter effective life of between 200 and 400 charge cycles, compared to well over 1000 charge cycles for Ni-Cad and Ni-Mh and a high degree of care has to be taken when charging Li-Po batteries. They have been known to burst into flames or even explode, for this reason I do not recommend Li-Po batteries for RC beginners.
   Another problem with Li-Po packs is they are physically bigger in size, so for those with older "Vintage" models, they may not fit into the provided space for the battery on the chassis.

   The latest development in battery technology for RC are Li-Ion. Originally produced for Laptops, Ipods, Tablets and the like, they are now available for RC models. Much like Li-Po for price and charge cycle life, the power and capacity is a moderate improvement, but for me, at the moment, not worth the expense.

   One final word of warning. NEVER leave your charging Li-Po or Li-Ion battery unattended when being charged and NEVER above the recommended charge rate. After use, store each battery with about 60% charge remaining and always in a fireproof bag.


For More Setup Information check out my Hints and Tips page.






Hints and Tips


Electric Motors for RC Models

Brushless Motor Basics

   Choosing the right Brushless motor for your needs can be a daunting task for those new to Radio Controlled Models. If you have a local club perhaps you could ask some of the more experienced members for their advice, but a little basic knowledge about the subject, so you know what questions to ask is always useful.

   All Brushless motors are rated by Kilovolts (KV) and is an indication of the revs per minute (RPM) that particular Motor can attain running freely, under no load conditions, per Volt of input.

   For Example: To calculate the Maximum RPM of a Motor listed at 4000 KV, connected to a 7.4 Volt Battery, simply multiply the two: 4000 x 7.4 = 29600 RPM.

   The two main types of Brushless Motors used in RC are Sensored and a Sensorless Motors.
   Sensored Motors can be connected directly using s cable, to the Electronic Speed Controller (ESC). The ESC is then able to monitor the performance of the Motor and regulate Current output, to attain smooth, controlled acceleration. Advance and Retard timing is made automatically by the ERSC to change torque when exiting corners and give you more RPM for long straights.

   Sensorless Motors can only be set manually for Advance and Retard timing and once that setting is made you have to stick with it. For obvious reasons, Sensorless motors are cheaper to buy than the Sensored type: Ideal if you just want to bash around in the back yard, but not so much if you are serious about your racing.

   Brushless Motors, need a reasonable amount of maintenance if they are to remain competitive. For top level racing I recommend you strip, clean and re-oil the bearings every 2 or 3 meetings (Check out our "get the best from your bearings" section).
   Gearing your motor correctly for any given track is always important. (Check out my Gearing tips on the Pinions Section of this site) A cool motor is an efficient motor. As your motor heats up towards the end of a race, it will loose efficiency. Gearing correctly can avoid this problem to some degree and simply following my simple guidelines, described in the aforementioned article can help you not only keep your motor running efficiently, but help you stay in front of your opposition.

   One last tip .. When re-building your Brushless Motor, to safely replace the Rotor, use a rolled up piece of paper and place it into the Can. This will protect your rotor against damage. Then carefully remove the paper before replacing the endbell.

For More Setup Information check out my Hints and Tips page.










On/Off Road
RC Models:

Radio
Equipment:

Accessories: