RCScrapyard ► Iconic Vintage Radio Controlled (RC) Model Car Archive ► Schumacher Cat K1 Aero.
RCScrapyard Radio Controlled Models
Flags

1/10 Scale Electric Buggy:

Schumacher Cat K1 Aero - K147 / K149 (Radio Controlled Model Review)


Navigation: Sitemap  ▶  Manufacturers  ▶  Schumacher

History, Info (and How To Set-up Tips) for the Schumacher Cat K1 Aero:


  Introduced in December 2013, the Cat K1 Aero is the first Schumacher 4WD off-road car to employ orbital gear differentials, after over thirty years of developing and perfecting their innovative and highly acclaimed ball differential.

  In my opinion, for off-road, the gear differential is probably the correct choice. Jumps and bumps place a lot of stress on the drive system of off-road models and the ball differential, although smooth in operation when set correctly, was far too maintenance intensive.

  Other upgrades for the Cat K1 Aero include a full carbon fibre chassis and top deck and V2 big bore dampers.

Schumacher Cat K1 Aero - 1:10 Electric RC Buggy
▼ Scroll Down for More Images ▼


  To race the Schumacher Cat K1 Aero, it requires a high level of tuning for improved stability when cornering, to keep it on the track and give you more grip under acceleration. Even the smallest change in your cars settings can make a Big difference. Our simple to follow instruction chart will show how to attain the best Set-up for your personal requirements.

ebay









Gas/Nitro Engines Body Shells Radio Transmitters etc Tires Wheels/Rims Electronic Speed Controllers Battery Packs / Chargers Electric Motors












Items For Sale:






Flags

★ Schumacher Cat K1 Aero ★
Schumacher Cat K1 Aero

★ Schumacher Cat K1 Aero Chassis ★
Schumacher Cat K1 Aero Chassis

★ Schumacher Cat K1 Aero Chassis ★
Schumacher Cat K1 Aero Chassis


Buying a Used Schumacher Cat K1 Aero Buggy (and What to look for)


   Buying a used Schumacher Cat K1 Aero Electric Buggy, or any used RC Model, has a number of advantages. It is generally cheaper than new, ready built and may come with a variety of expensive hop-ups already installed. Cheap, pre-loved bargains are always becoming available. However, depending on the age of your purchase, it may need a little tender loving care before you can take it out on the back yard.

   The one thing you will always need is an instruction manual. If not supplied with your purchase, they can often be downloaded from the Schumacher website, or purchased separately on eBay. With an instruction manual, any problems with your model Buggy you may discover can easily be fixed.

Dampers
   When you receive your used Schumacher Buggy, make a general visual inspection of the chassis, front and rear wishbones, suspension shock towers etc, for any broken parts that may need to be replaced. Then, take a screwdriver and box spanner and check each self tapping screw and nut for security, taking care not to over tighten.

   Next, for those Schumacher models with oil filled shock absorbers, remove them from the chassis and dismantle the coil springs. The damper shafts should push in and pull out with a smooth action. If you feel a jolt as you change direction, this means the oil has leaked out and must be topped up. At the same time, change the O-Ring seals to prevent more leakage. Also check the damper shafts for damage. If they are scratched, change them as soon as possible.

   If the body shell of your Schumacher Cat K1 Aero is broken, ripped or damaged in any way, this can be easily repaired with rubber solution glue. Also, for added protection and if available for your Cat K1 Aero model, fit an under guard to stop dirt and gravel entering the chassis.

Titanium Turnbuckles
   Examine the drive shafts for wear and replace as required. If possible, change them for titanium. The steel shafts wear and bend too easily.

   If you intend to race your Cat K1 Aero Buggy model at a competitive level, I would also recommend you obtain and fit titanium pivot shafts, turnbuckles, tie rods and steering rods.

   Drive Belts need checking at regular intervals for wear, tension and damage. If deemed necessary, adjust the tensioning pulley until the belt can be depressed in the centre by no more than around 5mm. If the belt was slack, also examine the drive pulleys for wear. The teeth should provide a well seated fit for the belt teeth and not be rounded on the corners. If the belt teeth do not fit snugly, change the pulleys as soon as possible. For top level racing it may be prudent to replace all belts and pulleys after each race meeting.

Spur Gears
   Gears are a weakness on all Buggy RC models. Head on collisions can easily damage the gear teeth on nylon and plastic spur gears. Heavy impacts can also loosen the nuts or self tapping screws that hold the Electric Motor in Position, allowing the pinion gear to pull out of mesh slightly and rip the tops off the teeth on your spur gear. To minimise this possibility, fit bolts with locking nuts to the Electric Motor mount and remember to check them for security after every two or three runs.

   Ball joints always cause problems. For top level Electric Buggy racing, the plastic ball connectors should be checked and if deemed necessary changed after every meeting. A simple thing like a loose fitting connector popping off could easily end your race, so better safe than sorry.

Servo Gears
   The Cat K1 Aero steering servo is also prone to damage. In high speed crash situations, the fragile gear teeth of the servo can be broken off, rendering your expensive servo useless, so be sure to obtain a good quality "Servo Saver". Check out my Servo Information article.

   If body roll on your Schumacher Cat K1 Aero is a problem, handling can be improved with the use of stabilizers, anti roll or sway bars, stiffer tuning springs and, or, thicker silicone oil in the dampers.

Ball Bearings
   If your used Schumacher Buggy comes with plastic and sintered brass bushings (ring type bearings), check the shafts that run in them for wear. Dust and grit can get into these bearings and abrade the shafts. Therefore, you should replace them all with shielded ball bearings. If the model has been run with ring type bearings, you may have to change all the axles and driveshafts. For more information, take a look at my article, How to get the best from your Bearings.

   Finally, good luck with your Cat K1 Aero model and good racing.


▼ Scroll Down for More Articles and Advice ▼

Or, check out our RC Model Car Setup Guide


^ TOP ^












Manufacturers and Brands Catalogued and Listed by RC-Scrapyard.


   At present, the RC Model Manufacturers, Brands and Distributors covered by us are: ABC Hobby, Academy, Acme Racing, Agama Racing, Amewi, Ansmann Racing, ARRMA, Team Associated, Atomic RC, Axial, AYK, Bolink, BSD Racing, Capricorn, Carisma, Carson, Caster Racing, Cen, Corally, Custom Works, Durango, Duratrax, ECX - Electrix, Exceed RC, FG Modellsport, FS-Racing, FTX, Fujimi, Gmade, GS-Racing, Harm, HBX, Helion, Heng Long, Himoto Racing, Hirobo, Hitari, Hobao, Hong-Nor, Hot Bodies, HPI, HSP, Intech, Integy, Jamara, JQ Products, Kawada, Kyosho, Losi, LRP, Maisto, Mardave, Marui, Maverick, MCD Racing, Megatech, Mugen, New Bright, Nichimo, Nikko, Nkok, Ofna, Pro-Pulse, Protech, PTI, RC4WD, Redcat Racing, RJ-Speed, Robitronic, Schumacher, Seben, Serpent, Smartech, Sportwerks, Step-Up, Tamiya, Team-C Racing, Team Magic, Thunder Tiger, Tomy, Top Racing, Traxxas, Trinity, Tyco, Vaterra RC, Venom, VRX Racing, WLToys, X-Factory, Xmods, Xpress, Xray, XTM, Yankee RC, Yokomo, ZD Racing and Zipzaps.

   This is an ongoing project, with new and "lost in time" RC Model Brands being added as they are found and although most of those listed above have been covered in relative detail, some are still being researched and will be completed in the near future.





















★ Schumacher Cat K1 Aero Chassis ★
Schumacher Cat K1 Aero Chassis - 1:10 Electric RC Buggy


Hints and Tips

Look after your Gears

   In RC there are a number of different gear teeth sizes we tend to use, based on two systems. Imperial and metric. The imperial system has sizes 24dp, 32dp, 48dp and 64dp. DP stands for Diametral Pitch and the number refers to the number of teeth per inch. The metric system has sizes 0.4m, 0.5m, 0.6m, 0.7m, 0.8m and 1m. M stands for Module and is the ratio of the reference diameter of the gear divided by the number of teeth.

   The different sizes are used basically for strength. 32dp gears larger than 64dp gears, therefore it stands to reason that the 32dp gears are by design stronger and for this reason are more commonly used on a number of entry level buggys and nitro models because of the higher torque levels involved. Also, the bigger the scale of the model, the stronger the teeth need to be.

   64dp and its metric equivalents are generally the choice of 1:10 electric on-road racers, because of its higher range of ratio options and smoother action in comparison to other sizes. On-road models are not as hard on the gears as off-road, so the weaker, small tooth size is not a problem.

   48dp and its metric equivalents tend to be preferred by 1:10 off-road racers, mainly because of their strength in comparison to the 64dp and smoother operation than 32dp. Off-road models need gears that can handle all the knocks and bangs, as well as heavy landings off high jumps.

   Setting your gears is the most important part of looking after your gears.

   Backlash is basically the gap between the teeth in mesh. The perfect gear setting must have a small amount of backlash. To achieve the best setting use a very thin sheet of plastic between the pinion and spur gear teeth as you press them into mesh. After tightening the motor mount screws, use your fingers to spin the spur gear and roll out the plastic sheet. If the setting is correct, there will be a small amount of movement (backlash) between the gear teeth before they catch. If the mesh is too deep, there will be no movement between the teeth, this will create friction and if you run them like this, they will grind together, wear and break. If the mesh is not deep enough and only the tips of the teeth are touching, the excessive backlash will soon damage and strip the tops off the teeth rendering the gears useless.

For More Setup Information check out my Hints and Tips page.







Hints and Tips

Ride Height

   To allow the suspension on any RC model to do its work properly, it needs to settle in a position that is somewhere between it being able to react to any bumps and holes it may encounter on the track. To do this, it needs to be adjusted to somewhere in-between those limits. That position is termed the ride height and is generally measured with the car race ready, that means with the motor and battery etc installed and is the distance between the underside of the chassis and the ground.

   Simply speaking, determining ride height is dependent on the specific track conditions. For off road models the rule is simple, the bigger the bumps and the deeper the holes, the higher the ride height. On road, the closer the car is to the track, the better it will handle.

   For 1:10 Buggys I generally recommend a starting point for ride height at around 20mm. 1:10 Trucks and Truggys, 30mm upwards, depending on the wheel diameter. For On Road models, as low as possible, but normally the setting is around 5mm.

   Ride height doesn't just affect the way the car handles uneven track conditions, it also influences the way the car handles when cornering. For a stable car, body roll must be kept to a minimum and keeping the ride height low, is by far the best and easiest way to control it.

   Before you begin to set the ride height, it is best to make sure that each pair of shocks are exactly the same length, have the same spring type and same silicone oil weight. Also, if you don't have a ride height gauge of any kind, decide what height you want set your car to and prepare some kind of slip gauge to that dimension, a book, a pen, or anything that measures to what you want. I used an old square plastic servo mount, which was exactly 5mm for my touring car. It may be low tech, but it is just as accurate as any gauge you can buy.

   To set the ride height, the race ready car must be placed on a flat surface. Slide your slip gauge under the chassis and adjust the height by adding or removing tension to the damper springs. This is done on most models by using small C shaped clips, placed over the damper, above the springs, or on a number of top of the range models, this adjustment can be made by screwing a knurled nut on each threaded damper body. As a rule if the springs are compressed by more than 25% they should be replaced by stiffer springs. The gauge should just slide under the chassis on all four corners of the chassis.

For More Setup Information check out my Hints and Tips page.










On/Off Road
RC Models:

Radio
Equipment:

Accessories: