RCScrapyard ► Iconic Vintage Radio Controlled (RC) Model Car Archive ► Tamiya Opel Ascona 400 Rally. ITEM #58037 58037.
RCScrapyard Radio Controlled Models
Flags

Tamiya Opel Ascona 400 Rally - #58037 (Radio Controlled Model Review)

1/10 Scale Electric Rally Car - QT Chassis:

  Released by Tamiya on November 7, 1983, the Opel Ascona 400 Rally, came four months after the Audi Quattro Rally (#58036) the only other model to be based on the same chassis. The model depicts the car that won the World Rally Championship (WRC) title in 1982.

  As ever, the Lexan polycarbonate body shell of the Ascona is highly detailed, with two hard plastic sections secured to its front and rear, but perched on top of the bathtub chassis of the kit, it dosent quite look right.

Tamiya Opel Ascona 400 Rally - #58037
▼ Scroll Down for More Images ▼


  Like the Quattro, the high centre of gravity made the car unstable and the hard plastic body parts on the Opel Ascona broke far too easily. For this reason, complete examples are not all that common. However, NIB kits occasionally come up for auction and used repairable models are often available.


      Rating: 3.53.5 Stars out of 5 Reviewed by: RCScrapyard     Manual.

ebay




Gas/Nitro Engines Body Shells Radio Transmitters etc Tires Wheels/Rims Electronic Speed Controllers Battery Packs / Chargers Electric Motors












Items For Sale:











Flags

Tamiya Opel Ascona 400 Rally #58037 - Chassis
Tamiya Opel Ascona 400 Rally #58037 Chassis
Tamiya Opel Ascona 400 Rally #58037
Tamiya Opel Ascona 400 Rally #58037 Body Shell

Buying a Used Tamiya Opel Ascona 400
Rally Car (and What to look for)


   Buying a used Tamiya Opel Ascona 400 Electric Rally Car, or any used RC Model, has a number of advantages. It is generally cheaper than new, ready built and may come with a variety of expensive hop-ups already installed. Cheap, pre-loved bargains are always becoming available. However, depending on the age of your purchase, it may need a little tender loving care before you can take it out on the back yard.

   The one thing you will always need is an instruction manual. If not supplied with your purchase, they can often be downloaded from the Tamiya website, or purchased separately on eBay. With an instruction manual, any problems with your model Rally Car you may discover can easily be fixed.

Dampers
   When you receive your used Tamiya Rally Car, make a general visual inspection of the chassis, front and rear wishbones, suspension shock towers etc, for any broken parts that may need to be replaced. Then, take a screwdriver and box spanner and check each self tapping screw and nut for security, taking care not to over tighten.

   Next, for those Tamiya models with oil filled shock absorbers, remove them from the chassis and dismantle the coil springs. The damper shafts should push in and pull out with a smooth action. If you feel a jolt as you change direction, this means the oil has leaked out and must be topped up. At the same time, change the O-Ring seals to prevent more leakage. Also check the damper shafts for damage. If they are scratched, change them as soon as possible.

   If the body shell of your Tamiya Opel Ascona 400 is broken, ripped or damaged in any way, this can be easily repaired with rubber solution glue. Also, for added protection and if available for your Opel Ascona 400 model, fit an under guard to stop dirt and gravel entering the chassis.

Titanium Turnbuckles
   Examine the drive shafts for wear and replace as required. If possible, change them for titanium. The steel shafts wear and bend too easily.

   If you intend to race your Opel Ascona 400 Rally Car model at a competitive level, I would also recommend you obtain and fit titanium pivot shafts, turnbuckles, tie rods and steering rods.

   On Belt driven models, the Drive Belts need checking at regular intervals for wear, tension and damage. If deemed necessary, adjust the tensioning pulley until the belt can be depressed in the centre by no more than around 5mm. If the belt was slack, also examine the drive pulleys for wear. The teeth should provide a well seated fit for the belt teeth and not be rounded on the corners. If the belt teeth do not fit snugly, change the pulleys as soon as possible. For top level racing it may be prudent to replace all belts and pulleys after each race meeting.

   For Gear driven models, the gearbox of your used Rally Car should be opened up to check for gear wear and lubrication. A thin coat of grease is often used on internal gears and although this is fine for basic running around on the back yard, if you intend to race your Rally Car at a higher level, this should be removed and replaced with racing oil (ZX1 or Teflon Oil). Of course, this should be reapplied after each race meeting.

Spur Gears
   Gears are a weakness on all Rally Car RC models. Head on collisions can easily damage the gear teeth on nylon and plastic spur gears. Heavy impacts can also loosen the nuts or self tapping screws that hold the Electric Motor in Position, allowing the pinion gear to pull out of mesh slightly and rip the tops off the teeth on your spur gear. To minimise this possibility, fit bolts with locking nuts to the Electric Motor mount and remember to check them for security after every two or three runs.

   Ball joints always cause problems. For top level Electric Rally Car racing, the plastic ball connectors should be checked and if deemed necessary, changed after every meeting. A simple thing like a loose fitting connector popping off, could easily end your race, so better safe than sorry.

Servo Gears
   The Opel Ascona 400 steering servo is also prone to damage. In high speed crash situations, the fragile gear teeth of the servo can be broken off, rendering your expensive servo useless, so be sure to obtain a good quality "Servo Saver". Check out my Servo Information article.

   If body roll on your Tamiya Opel Ascona 400 is a problem, handling can be improved with the use of stabilizers, anti roll or sway bars, stiffer tuning springs and, or, thicker silicone oil in the dampers.

Ball Bearings
   If your used Tamiya Rally Car comes with plastic and sintered brass bushings (ring type bearings), check the shafts that run in them for wear. Dust and grit can get into these bearings and abrade the shafts. Therefore, you should replace them all with shielded ball bearings. If the model has been run with ring type bearings, you may have to change all the axles and driveshafts. For more information, take a look at my article, How to get the best from your Bearings.

   Finally, good luck with your Opel Ascona 400 model and good racing.




▼ Scroll Down for More Articles and Advice ▼

Or, check out our RC Model Car Setup Guide














^ TOP ^












Tamiya Buggys Tamiya Trucks Tamiya Monster Trucks Tamiya Rock Crawlers Tamiya Off Road Chassis Types Tamiya Touring Car Tamiya Drift Car Tamiya WRC Car Tamiya M Chassis
Tamiya Tractor Trucks Tamiya Touring Car Chassis Tamiya F1 Tamiya F1/Le Mans Chassis Types Tamiya Military Tamiya Tanks












Hints and Tips

Dampers

   Dampers, Shock Absorbers, Shocks call them what you will, they are one of the least understood, but most important tools you have for adjusting the handling characteristics of your RC model.

   In this article, I will endeavour to explain just what you can achieve by making simple tweaks to your shocks and how these tweaks can keep you ahead of your opposition on the track.

   In dictionary terms "Damper" is described as "A mechanical device to absorb the energy of sudden impulses." In plain language, they stop your car from bouncing all over the track.


So how do Dampers work?

   Basically what you have is a small amount of silicone oil contained in a sealed cylinder. Through the centre of that cylinder is a metal rod and on the end of that rod, a piston with a number of small holes in it. Pulling, or pushing the rod in and out of the cylinder, your will notice a certain amount of resistance as the oil is forced through the holes in the piston. To manipulate that resistance you have two options. You could use thicker or thinner oil, or change the size of the holes in the piston. So if you have thicker oil, or smaller holes, you have more resistance. Less viscous oil or larger holes, less resistance. This simple physical relationship, coupled with a good set of tuning springs, is all you need to set-up your car to beat the rest.

   Out on the race track, the main thing you want to avoid is your car bouncing around all over the place, sliding, or even rolling over when you negotiate a tight corner. To prevent this you need to make changes, but before you make those changes you need to consider what your problem is for that particular track. How your model reacts when cornering does it Under-steer? (Slide towards the outside of the corner) or Over-steer (Turns towards the inside of the corner). Does it react differently when you exit the corner to how it did when you entered it?

   Once you have decided what your problem is, go to our "Set-Up" page linked below and follow the step by step instructions. But remember to only make ONE change at a time. If the first suggestion isn't enough to cure the problem, add the second and so on, until you find that perfect setting. Good luck and good racing.

For More Setup Information check out my Hints and Tips page.



Hints and Tips


How to Charge Rechargeable Batteries
for Radio Controlled Models

Ni-Cad (Nickel Cadmium) Batteries


1/  All Ni-Cad Batteries have to be Discharged soon after use. This is to avoid the dreaded "Memory" effect that on subsequent re-charges can cause a momentary drop in performance during a race. A simple discharger can be made from a car 12v bulb.

2/  Try to time your charge to complete just before a race. This will ensure maximum punch and duration. If a Ni-Cad is left to cool after a charge this advantage dissipates.

3/  The higher the charge current the more Punch the Ni-Cad battery will have (up to around 8 amps), however, the downside to this is a reduction in duration and effective battery life.

4/  Ni-Cad Batteries should be left to cool for about an hour after use before recharging. This will increase the effective life of the battery.


Ni-Mh (Nickel Metal Hydride) Batteries


1/  Never charge Ni-Mh batteries at a current higher than 4.5 amps. Although these batteries can give a higher voltage than Ni-Cad Batteries, they are much more sensitive and easy to damage if charged too quickly.

2/  Charging methods for Ni-Mh batteries can also be detrimental. The best I found was the "Slope" method. Avoid "Pulse" charging as this tends to effect crystal formation detrimentally and (it seems to kill them off) thus reduces duration over time.

3/  If using a temperature cut off charger on Ni-Mh batteries set to no more than 40 Degrees Centigrade. Any higher than this can damage the crystals.

4/  It is not necessary to discharge Ni-Mh Batteries. Unlike Ni-Cad batteries they do not develop a memory. Also, if they are totally discharged they sometimes will not charge straight after and need to be coaxed with a 10 minute trickle charge.

5/  Ni Mh Batteries can be recharged shortly after use without any discernable detrimental effects.


Li-Po (Lithium-Polymer) Batteries


1/  Li-Po batteries are a huge step forward in performance compared with Ni-Cad and Ni-Mh batteries. However, care has to be taken when charging. If certain procedures are not followed they could burst into flames or even explode, therefore I do not recommend Li-Po batteries for RC beginners.

2/  Li-Po batteries are more expensive and have a shorter effective life. Generally considered to be between 200 to 400 charge cycles compared to 1000+ for Ni-Cad and Ni-Mh.

3/  Consider a Battery pack listed as "2S 5000Mah 40c 2C".
"2S" is the number of cells in the pack, in this case 2 cells. Each cell provides around 3.7 Volts, so a 2S pack is around 7.4 Volts.
"5000Mah" (Mili-Amp-Hours) is the capacity. The amount of charge the pack can hold.
"40c" is the maximum Discharge rate. Which in our example would be calculated as 5000 (Mah) x 40 = 200000Ma (200 Amps).
"2C" is the maximum Charge rate. 1C being 5 Amps, so in our example 2 x 5 = 10 Amps.

4/  To safely charge your Li-Po Battery I would recommend a good Computerised charger, preferably one that can handle a Charge current of around 25A and always place the charging battery on a fireproof surface.

5/  Finally. NEVER leave your charging Li-Po battery unattended and NEVER EVER charge it above the recommended rate. When not in use, store with around 60% charge remaining in a fireproof box.


For More Setup Information check out my Hints and Tips page.







^ TOP ^


On/Off Road
RC Models:

Radio
Equipment:

Accessories: