RCScrapyard ► Iconic Vintage Radio Controlled (RC) Model Car Archive ► Tamiya March 782 BMW. Item #58013
RCScrapyard Radio Controlled Models
Flags

Tamiya March 782 BMW - #58013 (Radio Controlled Model)

1/10 Scale Electric Formula 2 Car - F2 / F2-CS Chassis:

  Released by Tamiya on June 25, 1979, this RC model of the March 782 BMW was the first Tamiya model to be based on the F2 alloy plate chassis.

Tamiya March 782 BMW - #58013

  March was a British F2 car company who developed the March 782 incorporating a powerful BMW engine. The match was made in heaven and this company became the most successful of all F2 in the late 70s and early 80s.

  Tamiya faithfully reproduced this successful racer in June 1979. The detailed model was a great achievement of accuracy to the original model.

  The chassis was made of aluminium plate with plastic pieces. The suspension being achieved from the flexible aluminium F2 chassis. The motor supplied with the kit was an RS-380.

  Although part of the famous "Tamiya 100", this model, surprisingly, is not highly collected and because of this the price for this model is much less than some of its contemporaries.


      Rating: 3.53.5 Stars out of 5 Reviewed by: RCScrapyard     Manual.





Gas/Nitro Engines Body Shells Radio Transmitters etc Tires Wheels/Rims Electronic Speed Controllers Battery Packs / Chargers Electric Motors












Items For Sale:











Flags

Tamiya March 782 BMW #58013 - Chassis
Tamiya March 782 BMW #58013 Chassis
Tamiya March 782 BMW #58013
Tamiya March 782 BMW #58013 Body Shell

General Information and Advice

   For those starting in Radio Controlled Racing, here are a few Hints and Tips: Firstly, buy a Kit not an RTR. That way, if something breaks you will have some idea how to fix it.

   Radio Controlled Model Cars are very fragile and easily broken. The main parts to protect are the Front Wishbones, Suspension Shock Towers, Dampers, Hub Carriers, Kingpins, Uprights and Toe in Blocks, so make sure you have a good strong front bumper and Lexan or Hard Plastic Body Shell and if available for your model, a protective under tray, to prevent grit and dust getting into any moving parts.

   The Steering Servo is also a weakness in high speed crash situations, so get yourself some good strong Servo Mount and Servo Saver. Also I would recommend Titanium Shafts, Turnbuckles, Tie Rods and pivot/steering shafts and if available for your model, lightweight Titanium Drive shafts, dog bones and CVD (Constant Velocity Drives). The standard steel types are far too easily bent.

   Gearing is another problem area on RC model cars. Head on collisions can easily break off gear teeth on Nylon/Plastic Spur Gears and even Bevel Gears inside the Gearbox. Heavy impacts can also loosen nuts and self taping screws that hold the Motor in Position, allowing the Pinion Gear to pull out of mesh slightly and rip the tops of the teeth on your Spur Gear. To avoid this to some degree, fit locking nuts and a new motor mount from time to time, so the self taping screws that hold the motor in position have less chance to come loose.

   Ball joints always cause problems. For top level Radio Controlled model car racing, the plastic ball connectors should be checked and if deemed necessary changed after every meeting. A simple thing like a loose fitting connector breaking free could easily end your race, so better safe than sorry.

   Many New car kits come with Nylon and Sintered Brass Ring type bearings. My advice is to discard these before initial installation and buy a good Hop-up set of Shielded Steel Ball Bearings. Or if you are serious about your racing, Teflon or Ceramic Bearings.

   One final piece of advice about the Setup of your Car. Keep the Centre of Gravity as low as possible. Ride Height is all important. For On Road Drift/Touring cars the Ride Height should be no more than 5mm, for Buggys, Trucks, Truggys and Monster Trucks, as low as possible depending on the track conditions. If Body Roll is a problem, handling can be improved with the use of Stabilizers, Anti roll or Sway Bars, stiffer Tuning Springs and, or thicker Silicon Oil in the Dampers. Also find somewhere to mount the Transponder as low in the Chassis as possible.

For Car Setup Information check out our Hints and Tips page.













^ TOP ^












Tamiya Buggys Tamiya Trucks Tamiya Monster Trucks Tamiya Rock Crawlers Tamiya Off Road Chassis Types Tamiya Touring Car Tamiya Drift Car Tamiya WRC Car Tamiya M Chassis
Tamiya Tractor Trucks Tamiya Touring Car Chassis Tamiya F1 Tamiya F1/Le Mans Chassis Types Tamiya Military Tamiya Tanks












Hints and Tips

Soldering

   In the sport of Radio Controlled racing, there are a number of things you have to learn to get you up there with the best. One of the most difficult, for those with little practical skill, is the art of Soldering.

   For their 540 silver can motors, Tamiya provide two wires, typically green and yellow, soldered to the endbell, with two bullet connectors to plug into the speed controller. While this is fine for bashing around the back yard, if you were to advance to a higher level you will soon find just how inefficient this method is.

   Motor wires are best soldered directly to the ESC. That way no energy is lost through high current draw. Some of the top drivers at one time even used to solder their batteries directly to the ESC, but these days with connectors such as "Deans" and "Power Pole" this isn't necessary but I still wouldn't use any kind of connector for the motor.

   There are basically two kinds of solder. Plumbers solder which is made up of 60% Lead and 40% Tin, where as electrical solder is the opposite 40% Lead with 60% Tin. NEVER use plumbers solder for your battery, ESC or motor joints. Lead melts at 327 degrees C, where as tin melts at 232 degrees C. The higher Lead content of plumbers means it melts at a higher temperature, which is not good for your battery cells. Also, Tin has almost half the electrical resistance of lead, so with the higher Tin content of electrical solder, electricity flows much easier to your motor.

   More recently, due to the European regulations for lead use, lead free solders are becoming more widely used well, in Europe anyway. The problem with lead free is the melting temperature it is much higher, making it difficult to produce reliable joints.

   Lead, as we know, is a poison to the body if ingested or inhaled in certain quantities. so when using lead based solder, try not to inhale any of the fumes and always wash your hands after completing your work. One of my friends also wears cotton gloves, but I find these cumbersome.

   For me lead / tin solder is far easier to use and if used with care, has less potential to damage your batteries having a much lower melting temperature.

For More Setup Information check out my Hints and Tips page.



Hints and Tips

Soldering Battery Packs

   Nicad and Nimh batteries sometimes come as six separate matched 1.2 volt cells. These of course have to be soldered to each other in series to produce either a side by side stick pack, or a two times three cell saddle pack.

   Special copper, or silver plated straps must be used to make up these packs and each strap must be prepared before attempting to solder it to the battery cell, by placing a blob of solder at each end of all the straps needed.

   A jig to hold the cells vertical and side by side is advisable. Using electrical solder, with a flux core (flux aids the flow and adhesion of the solder) heat your soldering iron to as hot as it will go. Then with the stick of solder touching on the end of the cell, touch it with the iron. What you want it to spread evenly on the central part of the pole of the cell. Count to 3 seconds. If it doesn't melt the solder in that time, your iron is not hot enough. Battery cells are notoriously very fragile and susceptible to the very high temperatures soldering requires. Anything longer than four or five seconds direct contact with the iron can cause damage to the crystal structure in the cell, so be wary.

   When you have solder on each end of each cell, line them up in the jig, positive to negative and dab a spot of flux on the soldered cells, then position your straps, with the solder coated side faced down, touching the solder on the end of the cell. Now place your hot iron on the strap. Heat will transfer through the strap and melt the solder on the two faces. Again, count to 3 and you should feel the strap drop slightly as the solder fuses with the solder on the cell. Repeat this for each cell on both sides to produce your desired configuration. Finally solder your two wires, previously prepared with connectors, to the pack. Do not solder wires with bare ends to your pack. If these wires were to touch and short out, you could effectively kill your expensive battery pack I use Red for positive and Black for negative, but so long as you know which is which electrical equipment does not like the battery to be connected the wrong way.

For More Setup Information check out my Hints and Tips page.









^ TOP ^


On/Off Road
RC Models:

Radio
Equipment:

Accessories: