RCScrapyard ► Iconic Vintage Radio Controlled (RC) Model Car Archive ► Tamiya Lotus Type 102B. ITEM: # 47009
RCScrapyard Radio Controlled Models
Flags

Tamiya Lotus Type 102B - # 47009 (Radio Controlled Model)

1/14 Scale Electric F1:

  Released by Tamiya on March 24, 1992, the 2WD TamTech Lotus Type 102B (#47009) came as a complete assembly kit, with a TamTech 202 R/C Radio Unit, C.P.R Unit P-05DB and an RK-370 electric motor. A 7.2v NiCad battery and charger are required to complete. The model is the perfect entry level car for those new to RC.

Tamiya Lotus Type 102B - # 47009

  The model is based on a sturdy monocoque type chassis, with three point suspension, precision differential gearing, slick racing tires and a highly detailed injection molded bodyshell and wing.

  This model comes with bush type bearings, that after a short while, when dust and grit get into them, can actually wear into the metal drive shafts that spin in them - our recommendation is that these should be replaced by a full set of steel shielded ball bearings ASAP.


      Rating: 44 Stars out of 5 Reviewed by: RCScrapyard     Manual.





Gas/Nitro Engines Body Shells Radio Transmitters etc Tires Wheels/Rims Electronic Speed Controllers Battery Packs / Chargers Electric Motors












Items For Sale:











Flags


Tamiya Lotus Type 102B - Chassis
Tamiya Lotus Type 102B Chassis

Tamiya Lotus Type 102B - Chassis
Tamiya Lotus Type 102B Chassis

Tamiya TamTech 202 Radio
Tamiya Tamtech 202 Radio System


General Information and Advice

   For those starting in Radio Controlled Racing, here are a few Hints and Tips: Firstly, buy a Kit not an RTR. That way, if something breaks you will have some idea how to fix it.

   Radio Controlled Model Cars are very fragile and easily broken. The main parts to protect are the Front Wishbones, Suspension Shock Towers, Dampers, Hub Carriers, Kingpins, Uprights and Toe in Blocks, so make sure you have a good strong front bumper and Lexan or Hard Plastic Body Shell and if available for your model, a protective under tray, to prevent grit and dust getting into any moving parts.

   The Steering Servo is also a weakness in high speed crash situations, so get yourself some good strong Servo Mount and Servo Saver. Also I would recommend Titanium Shafts, Turnbuckles, Tie Rods and pivot/steering shafts and if available for your model, lightweight Titanium Drive shafts, dog bones and CVD (Constant Velocity Drives). The standard steel types are far too easily bent.

   Gearing is another problem area on RC model cars. Head on collisions can easily break off gear teeth on Nylon/Plastic Spur Gears and even Bevel Gears inside the Gearbox. Heavy impacts can also loosen nuts and self taping screws that hold the Motor in Position, allowing the Pinion Gear to pull out of mesh slightly and rip the tops of the teeth on your Spur Gear. To avoid this to some degree, fit locking nuts and a new motor mount from time to time, so the self taping screws that hold the motor in position have less chance to come loose.

   Ball joints always cause problems. For top level Radio Controlled model car racing, the plastic ball connectors should be checked and if deemed necessary changed after every meeting. A simple thing like a loose fitting connector breaking free could easily end your race, so better safe than sorry.

   Many New car kits come with Nylon and Sintered Brass Ring type bearings. My advice is to discard these before initial installation and buy a good Hop-up set of Shielded Steel Ball Bearings. Or if you are serious about your racing, Teflon or Ceramic Bearings.

   One final piece of advice about the Setup of your Car. Keep the Centre of Gravity as low as possible. Ride Height is all important. For On Road Drift/Touring cars the Ride Height should be no more than 5mm, for Buggys, Trucks, Truggys and Monster Trucks, as low as possible depending on the track conditions. If Body Roll is a problem, handling can be improved with the use of Stabilizers, Anti roll or Sway Bars, stiffer Tuning Springs and, or thicker Silicon Oil in the Dampers. Also find somewhere to mount the Transponder as low in the Chassis as possible.

For Car Setup Information check out our Hints and Tips page.













^ TOP ^












Tamiya Buggys Tamiya Trucks Tamiya Monster Trucks Tamiya Rock Crawlers Tamiya Off Road Chassis Types Tamiya Touring Car Tamiya Drift Car Tamiya WRC Car Tamiya M Chassis
Tamiya Tractor Trucks Tamiya Touring Car Chassis Tamiya F1 Tamiya F1/Le Mans Chassis Types Tamiya Military Tamiya Tanks












Hints and Tips


Electric Motors for RC Models

Winds and Turns

Q/  What does 15x2 or 17x3 mean?
A/  The first number relates to the number of times the wires are wound round each of the 3 armature segments, the second number relates to the number of wires side by side. So a 15x2 would have 2 wires laid side by side and wrapped around each segment 15 times.

Q/  What is the difference in performance between a Low Turn motor (eg 11x1) and a High Turn motor (eg 27x1)?
A/  A Motor with Less Turns like an 11x1 means high current draw from the batteries which corresponds to less runtime, but More Power (Torque or Punch) Best for tracks with lots of corners and short straights where fast acceleration is needed. (use a small pinion)
Motors with More Turns like a 27x1 give you More runtime, but Less Power. So you get a smoother response and are therefore easier to drive. Better for less experienced drivers and Long straight, sweeping corner tracks. (with a large pinion) This is correct for Brushed, Modified and Stock Motors as well as Brushless Motors.

Q/  How do the number of winds effect a motor?
A/  A Motor with More Winds (number of wires eg 13x5) is less demanding on the battery and smoother in acceleration. Best for low grip, slippery tracks.
A Low Wind Motor (eg 11x1) is more punchy and can be difficult to handle. Best on high grip, hot weather Tarmac, or indoor carpet, high acceleration, low speed tracks.

Advance and Retard

Q/  What is Advance and Retard?
A/  On the Endbell of a Modified Motor (where the brushes fit) you will find two screws that hold the Endbell to the Can. If these screws are slackened off slightly the Endbell can then be twisted either Clockwise (Advance) or Anticlockwise (Retard). On Sensorless Brushless Motors this adjustment can generally be made in a similar way (although there are some Brushless Motors that have fixed timing for Spec level racing). Sensored Motors can be adjusted via the ESC.

Q/  What does "Advancing" the Endbell position do?
A/  Advancing the Endbell Reduces runtime, increases Punch (acceleration) and RPM to give a higher top speed.
On the down side, for Brushed Motors, the brushes wear faster and the increased current draw creates more arcing thus increased heat and Commutator (Comm) wear. Brushless Motors can lose some efficiency at the end of a race because of overheating due to increased current draw.

Q/  What does "Retarding" the Endbell position do?
A/  On both Brushed and Brushless Motors, Retarding the Endbell Increases runtime, decreases Punch (acceleration) and RPM to give a lower top speed and for Brushed Motors, brush wear and Commutator (Comm) wear is reduced.

Brushed Motor Basics

Q/  What is the effect of hard and soft Brushes?
A/  Basically, Hard brushes give a lower current draw, so consequently give longer run times and lower torque so less punch (acceleration)
Soft Brushes on the other hand increase current draw thus give higher torque and increased acceleration. Of course the down side of this is that Soft brushes wear much faster and must be changed more often. (I change mine when they get to around 5mm)

Q/  How does changing the brush spring change the motor?
A/  If you fit Stiffer Brush Springs your motor will have More power at low revs and also a lower top speed. I only ever fit stiff springs on bumpy tracks to reduce brush bounce.
Weaker springs reduce power but increase RPM so give less acceleration but a higher top speed. Good for long, sweeping, smooth tracks, where you can carry good speed through the corners.

For More Setup Information check out my Hints and Tips page.







Hints and Tips

Tires for RC Models

Sponge (Foam) Tires:

   Sponge Tires can be purchased either pre mounted, glued and trued on the rims, or separately. Fitting the Tires onto the rims can be messy, so here are a few tips to make it a bit easier.
   If you are fitting new Tires on old rims, make sure the old sponge Tire is completely removed. To do this, I recommend using a wood lathe and apiece of wood, at least 300mm long and more than the width of your wheels, with medium grit emery paper stuck to it ... sand paper will also work, but emery is harder wearing ... This will also be used for truing a wheel. (Described later)

How to Mount and Glue Sponge Tires onto Wheels/Rims.

1/   Mount the Tires on the rims. Make sure they are reasonably tight on the rims, too loose and you might have problems.

2/   I find this to be easier if either in the lathe, or on the car itself. (but be careful with that glue)
  Using your thumb and forefinger, lift up the Tire off the rim, then using a small spatula or a thin piece of rigid wood or plastic dipped in glue (I recommend Evo-Stik, Impact Adhesive) slip it in the gap, making sure both the Tire and the rim are smeared. Then lower the Tire back onto the rim and press it down. Turn the Tire approximately 60 degrees and repeat.

3/   Depending on the width of the Tire you may need to repeat the process on the inside also.


How to True Sponge Tires.

   Truing Sponge Tires is essential if you are serious about racing competitively. To do this you will need the piece of wood, as described earlier and a good pair of vernier or digital calipers.
   Sponge Tires will always wear unevenly, weather you race on Carpet or Tarmac. The outside wheels will always end a race smaller than the ones on the inside, so after each race I recommend swapping them over (unless you are fortunate to have a new set for each race) and dont forget to adjust the steering trim on your transmitter before the next race.

1/   Before starting, check each mounted Tire for diameter and order them smallest to largest. Start with the smallest and mount it in the lathe.

2/   Make sure you are wearing safety glasses before you start this procedure: Lay the sanding wood under the Tire so that it can be pivoted up from behind onto the Tire. Start the lathe spinning, so that as you stand infront of the Tire, it is rotating downwards. Slowly lift the sanding wood and try to hold it ridged as it comes up against the Tire. There will be a high point on the Tire that if you hold the bat rigid enough will eventually wear down until the Tire appears completely concentric. at this point stop the lathe and measure the diameter on the inside and outside of the width. If needs be, repeat the process until satisfied.
Repeat for each Tire, matching them in pairs for diameter.
If considered necessary also trim the sides.


For More Setup Information check out my Hints and Tips page.








^ TOP ^


On/Off Road
RC Models:

Radio
Equipment:

Accessories: