RCScrapyard ► Iconic Vintage Radio Controlled (RC) Model Car Archive ► Tamiya Honda S2000. ITEM #58236/#57016 M-04L.
RCScrapyard Radio Controlled Models
Flags

Tamiya Honda S2000 - #58236 (Radio Controlled Model)

1/10 Scale Electric M-Chassis Model Car - M-04L Chassis:

  Released by Tamiya on June 15, 1999, this self assembly Radio Controlled Model of the Honda S2000 sports car is based on the M04L Chassis.

Tamiya Honda S2000 - #58236 M-04L

  The first rear mounted motor, rear wheel drive, short wheelbase M-Chassis model, designated the M02, was released in 1995, for the Fiat Abarth 1000 TCR Berlina Corse (#58158). Four years later the design was updated with the introduction of the M04. No standard short 210mm wheelbase M04 version was ever produced and was only released in the Medium (M04M) 225mm and Long (M04L) 239mm wheelbase formats.

  The new design discards the horizontally mounted friction mono shocks that were used on the M02, replacing them with a more stable four coil over friction shock absorber configuration. Changing these for oil filled versions can improve the cars handling considerably.

  Like the majority of the radio controlled models produced by Tamiya around 80s and 90s the car disappointingly comes with the plastic/nylon and sintered brass bush type bearings. If installed, the grease on these bearings collect dust and grit that actually abrades the shafts spinning in them, so if you do fit ball bearings at a later time they are sloppy on the shafts not good To avoid this problem, a full set of steel ball bearings should be installed on first build.


      Rating: 44 Stars out of 5 Reviewed by: RCScrapyard     Manual.





Gas/Nitro Engines Body Shells Radio Transmitters etc Tires Wheels/Rims Electronic Speed Controllers Battery Packs / Chargers Electric Motors












Items For Sale:












Flags

Tamiya Honda S2000 #58236 M-04L - Chassis
Tamiya Honda S2000 #58236 M-04L Chassis
Tamiya Honda S2000 #58236 M-04L
Tamiya Honda S2000 #58236 M-04L

Buying a Used Tamiya Honda S2000
Touring Car (and What to look for)


   Buying a used Tamiya Honda S2000 Electric Touring Car, or any used RC Model, has a number of advantages. It is generally cheaper than new, ready built and may come with a variety of expensive hop-ups already installed. Cheap, pre-loved bargains are always becoming available. However, depending on the age of your purchase, it may need a little tender loving care before you can take it out on the back yard.

   The one thing you will always need is an instruction manual. If not supplied with your purchase, they can often be downloaded from the Tamiya website, or purchased separately on eBay. With an instruction manual, any problems with your model Touring Car you may discover can easily be fixed.

Dampers
   When you receive your used Tamiya Touring Car, make a general visual inspection of the chassis, front and rear wishbones, suspension shock towers etc, for any broken parts that may need to be replaced. Then, take a screwdriver and box spanner and check each self tapping screw and nut for security, taking care not to over tighten.

   Next, for those Tamiya models with oil filled shock absorbers, remove them from the chassis and dismantle the coil springs. The damper shafts should push in and pull out with a smooth action. If you feel a jolt as you change direction, this means the oil has leaked out and must be topped up. At the same time, change the O-Ring seals to prevent more leakage. Also check the damper shafts for damage. If they are scratched, change them as soon as possible.

   If the body shell of your Tamiya Honda S2000 is broken, ripped or damaged in any way, this can be easily repaired with rubber solution glue. Also, for added protection and if available for your Honda S2000 model, fit an under guard to stop dirt and gravel entering the chassis.

Titanium Turnbuckles
   Examine the drive shafts for wear and replace as required. If possible, change them for titanium. The steel shafts wear and bend too easily.

   If you intend to race your Honda S2000 Touring Car model at a competitive level, I would also recommend you obtain and fit titanium pivot shafts, turnbuckles, tie rods and steering rods.

   On Belt driven models, the Drive Belts need checking at regular intervals for wear, tension and damage. If deemed necessary, adjust the tensioning pulley until the belt can be depressed in the centre by no more than around 5mm. If the belt was slack, also examine the drive pulleys for wear. The teeth should provide a well seated fit for the belt teeth and not be rounded on the corners. If the belt teeth do not fit snugly, change the pulleys as soon as possible. For top level racing it may be prudent to replace all belts and pulleys after each race meeting.

   For Gear driven models, the gearbox of your used Touring Car should be opened up to check for gear wear and lubrication. A thin coat of grease is often used on internal gears and although this is fine for basic running around on the back yard, if you intend to race your Touring Car at a higher level, this should be removed and replaced with racing oil (ZX1 or Teflon Oil). Of course, this should be reapplied after each race meeting.

Spur Gears
   Gears are a weakness on all Touring Car RC models. Head on collisions can easily damage the gear teeth on nylon and plastic spur gears. Heavy impacts can also loosen the nuts or self tapping screws that hold the Electric Motor in Position, allowing the pinion gear to pull out of mesh slightly and rip the tops off the teeth on your spur gear. To minimise this possibility, fit bolts with locking nuts to the Electric Motor mount and remember to check them for security after every two or three runs.

   Ball joints always cause problems. For top level Electric Touring Car racing, the plastic ball connectors should be checked and if deemed necessary, changed after every meeting. A simple thing like a loose fitting connector popping off, could easily end your race, so better safe than sorry.

Servo Gears
   The Honda S2000 steering servo is also prone to damage. In high speed crash situations, the fragile gear teeth of the servo can be broken off, rendering your expensive servo useless, so be sure to obtain a good quality "Servo Saver". Check out my Servo Information article.

   If body roll on your Tamiya Honda S2000 is a problem, handling can be improved with the use of stabilizers, anti roll or sway bars, stiffer tuning springs and, or, thicker silicone oil in the dampers.

Ball Bearings
   If your used Tamiya Touring Car comes with plastic and sintered brass bushings (ring type bearings), check the shafts that run in them for wear. Dust and grit can get into these bearings and abrade the shafts. Therefore, you should replace them all with shielded ball bearings. If the model has been run with ring type bearings, you may have to change all the axles and driveshafts. For more information, take a look at my article, How to get the best from your Bearings.

   Finally, good luck with your Honda S2000 model and good racing.


For More on how to Setup your Touring Car, check out my Hints and Tips page.














^ TOP ^












Tamiya Buggys Tamiya Trucks Tamiya Monster Trucks Tamiya Rock Crawlers Tamiya Off Road Chassis Types Tamiya Touring Car Tamiya Drift Car Tamiya WRC Car Tamiya M Chassis
Tamiya Tractor Trucks Tamiya Touring Car Chassis Tamiya F1 Tamiya F1/Le Mans Chassis Types Tamiya Military Tamiya Tanks













Tamiya Honda-S2000


Hints and Tips

Soldering

   In the sport of Radio Controlled racing, there are a number of things you have to learn to get you up there with the best. One of the most difficult, for those with little practical skill, is the art of Soldering.

   For their 540 silver can motors, Tamiya provide two wires, typically green and yellow, soldered to the endbell, with two bullet connectors to plug into the speed controller. While this is fine for bashing around the back yard, if you were to advance to a higher level you will soon find just how inefficient this method is.

   Motor wires are best soldered directly to the ESC. That way no energy is lost through high current draw. Some of the top drivers at one time even used to solder their batteries directly to the ESC, but these days with connectors such as "Deans" and "Power Pole" this isn't necessary but I still wouldn't use any kind of connector for the motor.

   There are basically two kinds of solder. Plumbers solder which is made up of 60% Lead and 40% Tin, where as electrical solder is the opposite 40% Lead with 60% Tin. NEVER use plumbers solder for your battery, ESC or motor joints. Lead melts at 327 degrees C, where as tin melts at 232 degrees C. The higher Lead content of plumbers means it melts at a higher temperature, which is not good for your battery cells. Also, Tin has almost half the electrical resistance of lead, so with the higher Tin content of electrical solder, electricity flows much easier to your motor.

   More recently, due to the European regulations for lead use, lead free solders are becoming more widely used well, in Europe anyway. The problem with lead free is the melting temperature it is much higher, making it difficult to produce reliable joints.

   Lead, as we know, is a poison to the body if ingested or inhaled in certain quantities. so when using lead based solder, try not to inhale any of the fumes and always wash your hands after completing your work. One of my friends also wears cotton gloves, but I find these cumbersome.

   For me lead / tin solder is far easier to use and if used with care, has less potential to damage your batteries having a much lower melting temperature.

For More Setup Information check out my Hints and Tips page.



Hints and Tips


Electric Motors for RC Models

Winds and Turns

Q/  What does 15x2 or 17x3 mean?
A/  The first number relates to the number of times the wires are wound round each of the 3 armature segments, the second number relates to the number of wires side by side. So a 15x2 would have 2 wires laid side by side and wrapped around each segment 15 times.

Q/  What is the difference in performance between a Low Turn motor (eg 11x1) and a High Turn motor (eg 27x1)?
A/  A Motor with Less Turns like an 11x1 means high current draw from the batteries which corresponds to less runtime, but More Power (Torque or Punch) Best for tracks with lots of corners and short straights where fast acceleration is needed. (use a small pinion)
Motors with More Turns like a 27x1 give you More runtime, but Less Power. So you get a smoother response and are therefore easier to drive. Better for less experienced drivers and Long straight, sweeping corner tracks. (with a large pinion) This is correct for Brushed, Modified and Stock Motors as well as Brushless Motors.

Q/  How do the number of winds effect a motor?
A/  A Motor with More Winds (number of wires eg 13x5) is less demanding on the battery and smoother in acceleration. Best for low grip, slippery tracks.
A Low Wind Motor (eg 11x1) is more punchy and can be difficult to handle. Best on high grip, hot weather Tarmac, or indoor carpet, high acceleration, low speed tracks.

Advance and Retard

Q/  What is Advance and Retard?
A/  On the Endbell of a Modified Motor (where the brushes fit) you will find two screws that hold the Endbell to the Can. If these screws are slackened off slightly the Endbell can then be twisted either Clockwise (Advance) or Anticlockwise (Retard). On Sensorless Brushless Motors this adjustment can generally be made in a similar way (although there are some Brushless Motors that have fixed timing for Spec level racing). Sensored Motors can be adjusted via the ESC.

Q/  What does "Advancing" the Endbell position do?
A/  Advancing the Endbell Reduces runtime, increases Punch (acceleration) and RPM to give a higher top speed.
On the down side, for Brushed Motors, the brushes wear faster and the increased current draw creates more arcing thus increased heat and Commutator (Comm) wear. Brushless Motors can lose some efficiency at the end of a race because of overheating due to increased current draw.

Q/  What does "Retarding" the Endbell position do?
A/  On both Brushed and Brushless Motors, Retarding the Endbell Increases runtime, decreases Punch (acceleration) and RPM to give a lower top speed and for Brushed Motors, brush wear and Commutator (Comm) wear is reduced.

Brushed Motor Basics

Q/  What is the effect of hard and soft Brushes?
A/  Basically, Hard brushes give a lower current draw, so consequently give longer run times and lower torque so less punch (acceleration)
Soft Brushes on the other hand increase current draw thus give higher torque and increased acceleration. Of course the down side of this is that Soft brushes wear much faster and must be changed more often. (I change mine when they get to around 5mm)

Q/  How does changing the brush spring change the motor?
A/  If you fit Stiffer Brush Springs your motor will have More power at low revs and also a lower top speed. I only ever fit stiff springs on bumpy tracks to reduce brush bounce.
Weaker springs reduce power but increase RPM so give less acceleration but a higher top speed. Good for long, sweeping, smooth tracks, where you can carry good speed through the corners.

For More Setup Information check out my Hints and Tips page.









^ TOP ^


On/Off Road
RC Models:

Radio
Equipment:

Accessories: