RCScrapyard ► Iconic Vintage Radio Controlled (RC) Model Car Archive ► Tamiya HKS CLK. ITEM #58291 TA-04R.
RCScrapyard Radio Controlled Models
Flags

Tamiya HKS CLK - #58291 (Radio Controlled Model)

1/10 Scale Electric Touring Car - TA-04R Chassis:

  Released by Tamiya on June 26, 2002, this TA-04R Chassis Based RC model, is of the HKS Mercedes Benz CLK that raced in the 2002 All-Japan Grand Touring Car Championship (JGTC). The kit was never sold outside Japan and is considered very rare by collectors.

  The lightweight Lexan polycarbonate body shell in this kit is an accurate copy of the cars sporting lines. Decals of the distinctive HKS livery are included in the kit.

Tamiya HKS CLK - #58291 TA-04R

  Following the success of the TRF-414 Chassis series, Tamiya produced what was basically a less expensive version in the TA-04. Released in the year 2000, the design used a highly efficient 2 belt system and made possible a multitude of adjustments, such as shock angle, roll centre and camber, to fine tune the car for differing track surfaces and conditions.

  For the TA-04R, released in 2001, Tamiya fitted a light-weight carbon lower deck and SSG carbon upper deck, this not only reduces weight but stiffens the chassis to give stability. Front and rear ball differentials replace the bevel gear differentials of standard TA-04 to aid smoother cornering.

  For maximum efficiency, A full set of shielded ball bearings are also included in the kit.


      Rating: 44 Stars out of 5 Reviewed by: RCScrapyard     Manual.





Gas/Nitro Engines Body Shells Radio Transmitters etc Tires Wheels/Rims Electronic Speed Controllers Battery Packs / Chargers Electric Motors












Items For Sale:














Flags

Tamiya HKS Benz CLK #58291 TA-04R - Chassis
Tamiya HKS Benz CLK #58291 TA-04R Chassis
Tamiya HKS Benz CLK #58291 TA-04R
Tamiya HKS Benz CLK #58291 TA-04R Rear

Buying a Used Tamiya HKS CLK
Touring Car (and What to look for)


   Buying a used Tamiya HKS CLK Electric Touring Car, or any used RC Model, has a number of advantages. It is generally cheaper than new, ready built and may come with a variety of expensive hop-ups already installed. Cheap, pre-loved bargains are always becoming available. However, depending on the age of your purchase, it may need a little tender loving care before you can take it out on the back yard.

   The one thing you will always need is an instruction manual. If not supplied with your purchase, they can often be downloaded from the Tamiya website, or purchased separately on eBay. With an instruction manual, any problems with your model Touring Car you may discover can easily be fixed.

Dampers
   When you receive your used Tamiya Touring Car, make a general visual inspection of the chassis, front and rear wishbones, suspension shock towers etc, for any broken parts that may need to be replaced. Then, take a screwdriver and box spanner and check each self tapping screw and nut for security, taking care not to over tighten.

   Next, for those Tamiya models with oil filled shock absorbers, remove them from the chassis and dismantle the coil springs. The damper shafts should push in and pull out with a smooth action. If you feel a jolt as you change direction, this means the oil has leaked out and must be topped up. At the same time, change the O-Ring seals to prevent more leakage. Also check the damper shafts for damage. If they are scratched, change them as soon as possible.

   If the body shell of your Tamiya HKS CLK is broken, ripped or damaged in any way, this can be easily repaired with rubber solution glue. Also, for added protection and if available for your HKS CLK model, fit an under guard to stop dirt and gravel entering the chassis.

Titanium Turnbuckles
   Examine the drive shafts for wear and replace as required. If possible, change them for titanium. The steel shafts wear and bend too easily.

   If you intend to race your HKS CLK Touring Car model at a competitive level, I would also recommend you obtain and fit titanium pivot shafts, turnbuckles, tie rods and steering rods.

   On Belt driven models, the Drive Belts need checking at regular intervals for wear, tension and damage. If deemed necessary, adjust the tensioning pulley until the belt can be depressed in the centre by no more than around 5mm. If the belt was slack, also examine the drive pulleys for wear. The teeth should provide a well seated fit for the belt teeth and not be rounded on the corners. If the belt teeth do not fit snugly, change the pulleys as soon as possible. For top level racing it may be prudent to replace all belts and pulleys after each race meeting.

   For Gear driven models, the gearbox of your used Touring Car should be opened up to check for gear wear and lubrication. A thin coat of grease is often used on internal gears and although this is fine for basic running around on the back yard, if you intend to race your Touring Car at a higher level, this should be removed and replaced with racing oil (ZX1 or Teflon Oil). Of course, this should be reapplied after each race meeting.

Spur Gears
   Gears are a weakness on all Touring Car RC models. Head on collisions can easily damage the gear teeth on nylon and plastic spur gears. Heavy impacts can also loosen the nuts or self tapping screws that hold the Electric Motor in Position, allowing the pinion gear to pull out of mesh slightly and rip the tops off the teeth on your spur gear. To minimise this possibility, fit bolts with locking nuts to the Electric Motor mount and remember to check them for security after every two or three runs.

   Ball joints always cause problems. For top level Electric Touring Car racing, the plastic ball connectors should be checked and if deemed necessary, changed after every meeting. A simple thing like a loose fitting connector popping off, could easily end your race, so better safe than sorry.

Servo Gears
   The HKS CLK steering servo is also prone to damage. In high speed crash situations, the fragile gear teeth of the servo can be broken off, rendering your expensive servo useless, so be sure to obtain a good quality "Servo Saver". Check out my Servo Information article.

   If body roll on your Tamiya HKS CLK is a problem, handling can be improved with the use of stabilizers, anti roll or sway bars, stiffer tuning springs and, or, thicker silicone oil in the dampers.

Ball Bearings
   If your used Tamiya Touring Car comes with plastic and sintered brass bushings (ring type bearings), check the shafts that run in them for wear. Dust and grit can get into these bearings and abrade the shafts. Therefore, you should replace them all with shielded ball bearings. If the model has been run with ring type bearings, you may have to change all the axles and driveshafts. For more information, take a look at my article, How to get the best from your Bearings.

   Finally, good luck with your HKS CLK model and good racing.


For More on how to Setup your Touring Car, check out my Hints and Tips page.














^ TOP ^












Tamiya Buggys Tamiya Trucks Tamiya Monster Trucks Tamiya Rock Crawlers Tamiya Off Road Chassis Types Tamiya Touring Car Tamiya Drift Car Tamiya WRC Car Tamiya M Chassis
Tamiya Tractor Trucks Tamiya Touring Car Chassis Tamiya F1 Tamiya F1/Le Mans Chassis Types Tamiya Military Tamiya Tanks












Hints and Tips

Emergency Plastic Part Repairs

   It always happens when you least expect it. You are racing hard; and suddenly some idiot decides to side swipe you' and break your front wishbone. Even though you may carry spare parts for just about everything on your car, it always seems to be the same part that breaks and although you made a mental note the last time it happened to get a replacement you soon realise those mental notes were not worth the paper they are written on.

   So there you are, in the middle of nowhere with no spares. You ask around and no one has anything like your car, least of all parts for it and the closest model shop is 100 miles away. What are you supposed to do now?

   Some kind of repair is your only option.

   The one thing quite a few people think of first is superglue, but that kind of repair won't even get you around the first corner.

   What you need is something much stronger and the only way you can do that requires a good quality soldering iron, the plastic sprue (the bit left over when you remove all the parts for your car) or another broken part made from the same plastic.

   Using the largest tip you have, set the temperature so that it melts the plastic, but does not vaporise it. Place your broken part on a flat surface that will not be affected by the heat from the iron. I use the glass plate I have for setting the wheel camber of my model. Next, cut a piece of scrap plastic long enough for you to be able to hold on one end, as you work with it and place it over the break. At the point directly over the break, carefully melt the scrap plastic until it is around one millimetre above the break.

   Gently slide the iron sideways, depositing the scrap plastic about five millimetres either side and around the break. At each end of the fix, try to meld the scrap and broken part plastic. Picking up the broken part, continue the melding around each side of the break, then place it down the flat surface and repeat the process on the other side.

   When satisfied, switch off the iron and allow the plastic to cool. Using a modelling knife, carefully, cut away any excess plastic, but not too much.

   With a little practice a fix like this can be almost as strong as a new part and can save you a whole lot of anguish.

For More Setup Information check out my Hints and Tips page.



Ball Differentials


   Ball differentials were developed in the late 1980s to replace the high friction Gear differentials. Mainly used on Tamiya Touring Cars, Le-Mans and Formula One Cars, Ball Differentials are designed to be totally frictionless and smooth in action to provide effortless drive to the wheels on cornering, where the inside wheels must rotate slower than the outside wheels for controlled stability.

   Basically, the configuration of the Ball Differential is a number of small case hardened steel balls, spaced in a plastic cage that is in effect the drive gear for the axle. On each side of the gear are two hardened and tempered pressure plates that clamp over the steel balls, held in position by a screw through the centre of the assembly, incorporating a small thrust bearing and coil spring. The adjustment of this screw is crucial to the effectiveness of the differentials action. Too tight and the free movement of the diff is restricted. Too loose and the balls will slip on the plates when accelerating out of the corner, not only reducing drive, but damaging the balls and pressure plates not good. The optimum setting is obviously somewhere in between and is where the small coil spring is important. It must be compressed, but not fully, to provide the desired exact pressure required. With a little practise setting up the diff become second nature. Patience is the word for this procedure.

   Lubrication of Ball Differentials is essential for that smooth operation and special greases have been developed that allow the balls to roll freely in the cage and push aside as they roll over the pressure plates.

For More Setup Information check out my Hints and Tips page.









^ TOP ^


On/Off Road
RC Models:

Radio
Equipment:

Accessories: