RCScrapyard ► Iconic Vintage Radio Controlled (RC) Model Car Archive ► Traxxas Fiero GTP.
RCScrapyard Radio Controlled Models
Flags

1/12 Scale Electric Pan Car:

Traxxas Fiero GTP - # 1401 / # 1402 (Radio Controlled Model Review)


Navigation: Sitemap  ▶  Manufacturers  ▶  Traxxas

History, Info (and How To Set-up Tips) for the Traxxas Fiero GTP:


  Introduced by Traxxas in 1987, the Pontiac Fiero GTP touring car model was originally available as a kit - # 1401 - and "Ready to Race" - # 1402.

  Over the following years a number of unassembled kit and "Ready to Race" versions were produced with various upgrades and bodyshell options.

  The basic model was based on a double deck FRP TRX-12 chassis, with gear type differential and single coil spring over oil filled damper.

Traxxas Fiero GTP - 1:12 Electric RC Pan Car
▼ Scroll Down for More Images ▼


  To race the Traxxas Fiero GTP, it calls for fine tuning to attain better steering response and improve grip when cornering so you don't slide off the side of the track. Minute changes can make huge advancements. Our easy to understand list will show you how and lead you to the optimum Set-up to put you in front of the rest on the track.

ebay









Gas/Nitro Engines Body Shells Radio Transmitters etc Tires Wheels/Rims Electronic Speed Controllers Battery Packs / Chargers Electric Motors












Items For Sale:






Flags

★ Traxxas Fiero GTP ★
Traxxas Fiero GTP
★ Traxxas Fiero GTP Chassis ★
Traxxas Fiero GTP Chassis

★ Traxxas Fiero GTP Chassis ★
Traxxas Fiero GTP Chassis


General Information and Advice

   For those starting in Radio Controlled Racing, here are a few Hints and Tips: Firstly, buy a Kit not an RTR. That way, if something breaks you will have some idea how to fix it.

   Radio Controlled Model Cars are very fragile and easily broken. The main parts to protect are the Front Wishbones, Suspension Shock Towers, Dampers, Hub Carriers, Kingpins, Uprights and Toe in Blocks, so make sure you have a good strong front bumper and Lexan or Hard Plastic Body Shell and if available for your model, a protective under tray, to prevent grit and dust getting into any moving parts.

   The Steering Servo is also a weakness in high speed crash situations, so get yourself some good strong Servo Mount and Servo Saver. Also I would recommend Titanium Shafts, Turnbuckles, Tie Rods and pivot/steering shafts and if available for your model, lightweight Titanium Drive shafts, dog bones and CVD (Constant Velocity Drives). The standard steel types are far too easily bent.

   Gearing is another problem area on RC model cars. Head on collisions can easily break off gear teeth on Nylon/Plastic Spur Gears and even Bevel Gears inside the Gearbox. Heavy impacts can also loosen nuts and self taping screws that hold the Motor in Position, allowing the Pinion Gear to pull out of mesh slightly and rip the tops of the teeth on your Spur Gear. To avoid this to some degree, fit locking nuts and a new motor mount from time to time, so the self taping screws that hold the motor in position have less chance to come loose.

   Ball joints always cause problems. For top level Radio Controlled model car racing, the plastic ball connectors should be checked and if deemed necessary changed after every meeting. A simple thing like a loose fitting connector breaking free could easily end your race, so better safe than sorry.

   Many New car kits come with Nylon and Sintered Brass Ring type bearings. My advice is to discard these before initial installation and buy a good Hop-up set of Shielded Steel Ball Bearings. Or if you are serious about your racing, Teflon or Ceramic Bearings.

   One final piece of advice about the Setup of your Car. Keep the Centre of Gravity as low as possible. Ride Height is all important. For On Road Drift/Touring cars the Ride Height should be no more than 5mm, for Buggys, Trucks, Truggys and Monster Trucks, as low as possible depending on the track conditions. If Body Roll is a problem, handling can be improved with the use of Stabilizers, Anti roll or Sway Bars, stiffer Tuning Springs and, or thicker Silicon Oil in the Dampers. Also find somewhere to mount the Transponder as low in the Chassis as possible.

▼ Scroll Down for More Articles and Advice ▼

Or, check out our RC Model Car Setup Guide

^ TOP ^












Manufacturers and Brands Catalogued and Listed by RC-Scrapyard.


   At present, the RC Model Manufacturers, Brands and Distributors covered by us are: ABC Hobby, Academy, Acme Racing, Agama Racing, Amewi, Ansmann Racing, ARRMA, Team Associated, Atomic RC, Axial, AYK, Bolink, BSD Racing, Capricorn, Carisma, Carson, Caster Racing, Cen, Corally, Custom Works, Durango, Duratrax, ECX - Electrix, Exceed RC, FG Modellsport, FS-Racing, FTX, Fujimi, Gmade, GS-Racing, Harm, HBX, Helion, Heng Long, Himoto Racing, Hirobo, Hitari, Hobao, Hong-Nor, Hot Bodies, HPI, HSP, Intech, Integy, Jamara, JQ Products, Kawada, Kyosho, Losi, LRP, Maisto, Mardave, Marui, Maverick, MCD Racing, Megatech, Mugen, New Bright, Nichimo, Nikko, Nkok, Ofna, Pro-Pulse, Protech, PTI, RC4WD, Redcat Racing, RJ-Speed, Robitronic, Schumacher, Seben, Serpent, Smartech, Sportwerks, Step-Up, Tamiya, Team-C Racing, Team Magic, Thunder Tiger, Tomy, Top Racing, Traxxas, Trinity, Tyco, Vaterra RC, Venom, VRX Racing, WLToys, X-Factory, Xmods, Xpress, Xray, XTM, Yankee RC, Yokomo, ZD Racing and Zipzaps.

   This is an ongoing project, with new and "lost in time" RC Model Brands being added as they are found and although most of those listed above have been covered in relative detail, some are still being researched and will be completed in the near future.


















Hints and Tips

Getting into RC

   When I first got into racing RC, all I had was a three year old clapped out Tamiya Boomerang, a silver can stock motor, three step mechanical speed controller, two 1400Mah stick batteries and basic Acoms stick transmitter.

   I was the newbie and most of the guys I was racing against had all the latest models, modified motors, matched batteries and top spec radio equipment, but I was still beating them easily. Why? The answer is simple: Practice. I had been driving that old car around my back yard and in the local park for almost three years. The others bought their cars only a few weeks or months earlier and had pestered their parents for the latest and most expensive car, motor etc, but did not have the experience to be able to control it. While I was steadily trundling around the track, they were crashing out on every other corner, popping ball joints, breaking wishbones and generally causing havoc.

   The moral of this story is all too obvious and anyone starting up in RC who wants to race please take note. You don't need the best equipment to win races. You can start with a cheap basic kit and with a lot of practice in some wide open spaces where you will not cause any damage, learn how to control your car. Remember don't try to run before you can walk. Stick with that silver can motor for a while and upgrade to something a little faster only when you have mastered the old one. You don't even have to buy new. If you go down to your local RC Club, there are always cars for sale. They may be battered and bruised, but if you get an old brushed silver can motor, a cheap 5A ESC, a couple of Nicad, or Nimh batteries, charger and simple radio gear, that is all you need to start practising and after a while, winning races.

For More Setup Information check out my Hints and Tips page.







Hints and Tips

Ride Height

   To allow the suspension on any RC model to do its work properly, it needs to settle in a position that is somewhere between it being able to react to any bumps and holes it may encounter on the track. To do this, it needs to be adjusted to somewhere in-between those limits. That position is termed the ride height and is generally measured with the car race ready, that means with the motor and battery etc installed and is the distance between the underside of the chassis and the ground.

   Simply speaking, determining ride height is dependent on the specific track conditions. For off road models the rule is simple, the bigger the bumps and the deeper the holes, the higher the ride height. On road, the closer the car is to the track, the better it will handle.

   For 1:10 Buggys I generally recommend a starting point for ride height at around 20mm. 1:10 Trucks and Truggys, 30mm upwards, depending on the wheel diameter. For On Road models, as low as possible, but normally the setting is around 5mm.

   Ride height doesn't just affect the way the car handles uneven track conditions, it also influences the way the car handles when cornering. For a stable car, body roll must be kept to a minimum and keeping the ride height low, is by far the best and easiest way to control it.

   Before you begin to set the ride height, it is best to make sure that each pair of shocks are exactly the same length, have the same spring type and same silicone oil weight. Also, if you don't have a ride height gauge of any kind, decide what height you want set your car to and prepare some kind of slip gauge to that dimension, a book, a pen, or anything that measures to what you want. I used an old square plastic servo mount, which was exactly 5mm for my touring car. It may be low tech, but it is just as accurate as any gauge you can buy.

   To set the ride height, the race ready car must be placed on a flat surface. Slide your slip gauge under the chassis and adjust the height by adding or removing tension to the damper springs. This is done on most models by using small C shaped clips, placed over the damper, above the springs, or on a number of top of the range models, this adjustment can be made by screwing a knurled nut on each threaded damper body. As a rule if the springs are compressed by more than 25% they should be replaced by stiffer springs. The gauge should just slide under the chassis on all four corners of the chassis.

For More Setup Information check out my Hints and Tips page.










On/Off Road
RC Models:

Radio
Equipment:

Accessories: