RCScrapyard ► Iconic Vintage Radio Controlled (RC) Model Car Archive ► Mugen Seiki MRX2.
RCScrapyard Radio Controlled Models
Flags

1/8 Scale Nitro Rally/Touring Car:

Mugen MRX2 (Radio Controlled Model Review)


Navigation: Sitemap  ▶  Manufacturers  ▶  Mugen Seiki

History, Info (and How To Set-up Tips) for the Mugen MRX-2:


  Introduced by Mugen Seiki circa 1999, the 4WD MRX-2 Racing Car, was based on the Mugen Sting, redesigned by team driver Koji Sanada.

  The model is belt driven, on an alloy plate chassis, coil spring over oil filled dampers, dogbone drive-shafts, 2-speed transmission and a full set of ball bearings.

Mugen MRX2
▼ Scroll Down for More Images ▼


  To race the Mugen MRX-2, it must be fine tuned to improve handling, provide responsive steering and give you the grip to cruise around corners at high speed, without slipping off the track. Small adjustments can make a Big difference and our step by step procedure, will guide you to the best Set-up for your individual driving style.

ebay









Gas/Nitro Engines Body Shells Radio Transmitters etc Tires Wheels/Rims Electronic Speed Controllers Battery Packs / Chargers Electric Motors












Items For Sale:






Flags

★ Mugen MRX2 ★
Mugen MRX2

★ Mugen MRX2 Chassis ★
Mugen MRX2 Chassis


Buying a Used Mugen MRX-2
Touring Car (and What to look for)


   Buying a used Mugen MRX-2 Nitro Touring Car, or any used RC Model, has a number of advantages. It is generally cheaper than new, ready built and may come with a variety of expensive hop-ups already installed. Cheap, pre-loved bargains are always becoming available. However, depending on the age of your purchase, it may need a little tender loving care before you can take it out on the road.

   The one thing you will always need is an instruction manual. If not supplied with your purchase, they can often be downloaded from the Mugen website, or purchased separately on eBay. With an instruction manual, any problems with your model Touring Car you may discover can easily be fixed.

Dampers
   When you receive your used Mugen Touring Car, make a general visual inspection of the chassis, front and rear wishbones, suspension shock towers etc, for any broken parts that may need to be replaced. Then, take a screwdriver and box spanner and check each self tapping screw and nut for security, taking care not to over tighten.

   Next, for those Mugen models with oil filled shock absorbers, remove them from the chassis and dismantle the coil springs. The damper shafts should push in and pull out with a smooth action. If you feel a jolt as you change direction, this means the oil has leaked out and must be topped up. At the same time, change the O-Ring seals to prevent more leakage. Also check the damper shafts for damage. If they are scratched, change them as soon as possible.

   If the body shell of your Mugen MRX-2 is broken, ripped or damaged in any way, this can be easily repaired with rubber solution glue. Also, for added protection and if available for your MRX-2 model, fit an under guard to stop dirt and gravel entering the chassis.

Titanium Turnbuckles
   Examine the drive shafts for wear and replace as required. If possible, change them for titanium. The steel shafts wear and bend too easily.

   If you intend to race your MRX-2 Touring Car model at a competitive level, I would also recommend you obtain and fit titanium pivot shafts, turnbuckles, tie rods and steering rods.

   Drive Belts need checking at regular intervals for wear, tension and damage. If deemed necessary, adjust the tensioning pulley until the belt can be depressed in the centre by no more than around 5mm. If the belt was slack, also examine the drive pulleys for wear. The teeth should provide a well seated fit for the belt teeth and not be rounded on the corners. If the belt teeth do not fit snugly, change the pulleys as soon as possible. For top level racing it may be prudent to replace all belts and pulleys after each race meeting.

Spur Gears
   Gears are a weakness on all Touring Car RC models. Head on collisions can easily damage the gear teeth on nylon and plastic spur gears. Heavy impacts can also loosen the nuts or self tapping screws that hold the Nitro Engine in Position, allowing the pinion gear to pull out of mesh slightly and rip the tops off the teeth on your spur gear. To minimise this possibility, fit bolts with locking nuts to the Nitro Engine mount and remember to check them for security after every two or three runs.

   Ball joints always cause problems. For top level Nitro Touring Car racing, the plastic ball connectors should be checked and if deemed necessary changed after every meeting. A simple thing like a loose fitting connector popping off could easily end your race, so better safe than sorry.

Servo Gears
   The MRX-2 steering servo is also prone to damage. In high speed crash situations, the fragile gear teeth of the servo can be broken off, rendering your expensive servo useless, so be sure to obtain a good quality "Servo Saver". Check out my Servo Information article.

   If body roll on your Mugen MRX-2 is a problem, handling can be improved with the use of stabilizers, anti roll or sway bars, stiffer tuning springs and, or, thicker silicone oil in the dampers.

Ball Bearings
   If your used Mugen Touring Car comes with plastic and sintered brass bushings (ring type bearings), check the shafts that run in them for wear. Dust and grit can get into these bearings and abrade the shafts. Therefore, you should replace them all with shielded ball bearings. If the model has been run with ring type bearings, you may have to change all the axles and driveshafts. For more information, take a look at my article, How to get the best from your Bearings.

   Finally, good luck with your MRX-2 model and good racing.




▼ Scroll Down for More Articles and Advice ▼

Or, check out our RC Model Car Setup Guide


^ TOP ^












Manufacturers and Brands Catalogued and Listed by RC-Scrapyard.


   At present, the RC Model Manufacturers, Brands and Distributors covered by us are: ABC Hobby, Academy, Acme Racing, Agama Racing, Amewi, Ansmann Racing, ARRMA, Team Associated, Atomic RC, Axial, AYK, Bolink, BSD Racing, Capricorn, Carisma, Carson, Caster Racing, Cen, Corally, Custom Works, Durango, Duratrax, ECX - Electrix, Exceed RC, FG Modellsport, FS-Racing, FTX, Fujimi, Gmade, GS-Racing, Harm, HBX, Helion, Heng Long, Himoto Racing, Hirobo, Hitari, Hobao, Hong-Nor, Hot Bodies, HPI, HSP, Intech, Integy, Jamara, JQ Products, Kawada, Kyosho, Losi, LRP, Maisto, Mardave, Marui, Maverick, MCD Racing, Megatech, Mugen, New Bright, Nichimo, Nikko, Nkok, Ofna, Pro-Pulse, Protech, PTI, RC4WD, Redcat Racing, RJ-Speed, Robitronic, Schumacher, Seben, Serpent, Smartech, Sportwerks, Step-Up, Tamiya, Team-C Racing, Team Magic, Thunder Tiger, Tomy, Top Racing, Traxxas, Trinity, Tyco, Vaterra RC, Venom, VRX Racing, WLToys, X-Factory, Xmods, Xpress, Xray, XTM, Yankee RC, Yokomo, ZD Racing and Zipzaps.

   This is an ongoing project, with new and "lost in time" RC Model Brands being added as they are found and although most of those listed above have been covered in relative detail, some are still being researched and will be completed in the near future.


















Hints and Tips

Emergency Plastic Part Repairs

   It always happens when you least expect it. You are racing hard; and suddenly some idiot decides to side swipe you' and break your front wishbone. Even though you may carry spare parts for just about everything on your car, it always seems to be the same part that breaks and although you made a mental note the last time it happened to get a replacement you soon realise those mental notes were not worth the paper they are written on.

   So there you are, in the middle of nowhere with no spares. You ask around and no one has anything like your car, least of all parts for it and the closest model shop is 100 miles away. What are you supposed to do now?

   Some kind of repair is your only option.

   The one thing quite a few people think of first is superglue, but that kind of repair won't even get you around the first corner.

   What you need is something much stronger and the only way you can do that requires a good quality soldering iron, the plastic sprue (the bit left over when you remove all the parts for your car) or another broken part made from the same plastic.

   Using the largest tip you have, set the temperature so that it melts the plastic, but does not vaporise it. Place your broken part on a flat surface that will not be affected by the heat from the iron. I use the glass plate I have for setting the wheel camber of my model. Next, cut a piece of scrap plastic long enough for you to be able to hold on one end, as you work with it and place it over the break. At the point directly over the break, carefully melt the scrap plastic until it is around one millimetre above the break.

   Gently slide the iron sideways, depositing the scrap plastic about five millimetres either side and around the break. At each end of the fix, try to meld the scrap and broken part plastic. Picking up the broken part, continue the melding around each side of the break, then place it down the flat surface and repeat the process on the other side.

   When satisfied, switch off the iron and allow the plastic to cool. Using a modelling knife, carefully, cut away any excess plastic, but not too much.

   With a little practice a fix like this can be almost as strong as a new part and can save you a whole lot of anguish.

For More Setup Information check out my Hints and Tips page.







Hints and Tips

Toe Angle

   When you first build your RC model car, you will no doubt have made all the settings advised in the manufacturers' manual and will take it out on the back yard not thinking of things like camber, caster or toe-in I know I did. It's only when you get competitive that you start learning about these things and just what a big difference they can make to the handling of your car. One of the more effective of these adjustments is Toe-in.

   The term, toe-in, toe-out, or toe-angle, refers to the alignment of the front or rear wheels, when viewed from above and is easily adjusted via the track rods or turnbuckles that link to the steering mechanism or directly to the steering servo horn.

   Front toe-in reduces steering when entering a corner, but improves steering response on corner exit under acceleration. On the straights, toe-in will also improve the cars stability while accelerating.

   Front toe-out will improve steering on corner entry, but makes the car unstable under acceleration on the straights and on bumpy tracks. The usual recommendation is to have up to 1 degree of either toe-in or toe out.

   Rear toe-in is generally found as the standard setting on most on-road and off-road RC models.

   More rear toe-in provides the car with more power under-steer, as well as improved stability and rear end traction. This setting is recommended for low grip tracks.

   Less rear toe-in slightly reduces steering on corner entry, but improved steering under acceleration.

   To measure toe-angle, I used to use my trusty vernier callipers to measure the width at the front of the wheels and the rear of the wheels and using this information along with the diameter of the wheels simply calculate the angle. Or, you could alternatively use this data to draw a triangle on a sheet of paper and measure the angle with your trusty school protractor.

For More Setup Information check out my Hints and Tips page.










On/Off Road
RC Models:

Radio
Equipment:

Accessories: