RCScrapyard ► Iconic Vintage Radio Controlled (RC) Model Car Archive ► Kyosho Plazma Mk-III
RCScrapyard Radio Controlled Models
Flags

1/12 Scale Electric Pan Car:

Kyosho Plazma Mk-III - # 3151 / # 3152 (Radio Controlled Model)


Navigation: Sitemap  >  Manufacturers  >  Kyosho

All Manufacturers: Model Types  >  On Road  >  1/12 Electric On Road

History + Information (and How To Set-up Tips):


  Released by Kyosho circa 1987, the Plasma Mk III pan type chassis was available with a number of bodyshell options: # 3151 - KS-2, # 3152 - Limited Alpha-2 and came with a LeMans 600E Motor and servo operated mechanical speed controller.

  The model is based on an FRP plate chassis, with a gear differential, sliding pillar front suspension, rear coil spring over friction damper and ball bearings.

Kyosho Plazma Mk-III Pan Car
▼ Scroll Down for More Images ▼


  To race the Kyosho Plazma Mk-III, it requires a high level of tuning for improved stability when cornering, to keep it on the track and give you more grip under acceleration. Even the smallest change in your cars settings can make a Big difference. Our simple to follow instruction chart will show how to attain the best Set-up for your personal requirements.

  With simple to follow language, we can point you towards the correct Electric Motor for your Plazma Mk-III and achieve the best Gearing, for your battery and motor combination.

  Learn the secrets the professionals have known for years to get the best from their Bearings using a number of simple tips. See how you can easily avert Radio interference, and the best way to safely Charge your Batteries, for improved acceleration and more run time.









Gas/Nitro Engines Body Shells Radio Transmitters etc Tires Wheels/Rims Electronic Speed Controllers Battery Packs / Chargers Electric Motors












Items For Sale:






Flags

★ Kyosho Plazma Mk-III - KS-2 ★
Kyosho Plazma Mk-III - KS-2

★ Kyosho Plazma Mk-III Chassis ★
Kyosho Plazma Mk-III Chassis

★ Kyosho Plazma Mk-III Chassis ★
Kyosho Plazma Mk-III Chassis


General Information and Advice

   For those starting in Radio Controlled Racing, here are a few Hints and Tips: Firstly, buy a Kit not an RTR. That way, if something breaks you will have some idea how to fix it.

   Radio Controlled Model Cars are very fragile and easily broken. The main parts to protect are the Front Wishbones, Suspension Shock Towers, Dampers, Hub Carriers, Kingpins, Uprights and Toe in Blocks, so make sure you have a good strong front bumper and Lexan or Hard Plastic Body Shell and if available for your model, a protective under tray, to prevent grit and dust getting into any moving parts.

   The Steering Servo is also a weakness in high speed crash situations, so get yourself some good strong Servo Mount and Servo Saver. Also I would recommend Titanium Shafts, Turnbuckles, Tie Rods and pivot/steering shafts and if available for your model, lightweight Titanium Drive shafts, dog bones and CVD (Constant Velocity Drives). The standard steel types are far too easily bent.

   Gearing is another problem area on RC model cars. Head on collisions can easily break off gear teeth on Nylon/Plastic Spur Gears and even Bevel Gears inside the Gearbox. Heavy impacts can also loosen nuts and self taping screws that hold the Motor in Position, allowing the Pinion Gear to pull out of mesh slightly and rip the tops of the teeth on your Spur Gear. To avoid this to some degree, fit locking nuts and a new motor mount from time to time, so the self taping screws that hold the motor in position have less chance to come loose.

   Ball joints always cause problems. For top level Radio Controlled model car racing, the plastic ball connectors should be checked and if deemed necessary changed after every meeting. A simple thing like a loose fitting connector breaking free could easily end your race, so better safe than sorry.

   Many New car kits come with Nylon and Sintered Brass Ring type bearings. My advice is to discard these before initial installation and buy a good Hop-up set of Shielded Steel Ball Bearings. Or if you are serious about your racing, Teflon or Ceramic Bearings.

   One final piece of advice about the Setup of your Car. Keep the Centre of Gravity as low as possible. Ride Height is all important. For On Road Drift/Touring cars the Ride Height should be no more than 5mm, for Buggys, Trucks, Truggys and Monster Trucks, as low as possible depending on the track conditions. If Body Roll is a problem, handling can be improved with the use of Stabilizers, Anti roll or Sway Bars, stiffer Tuning Springs and, or thicker Silicon Oil in the Dampers. Also find somewhere to mount the Transponder as low in the Chassis as possible.

For Car Setup Information check out our Hints and Tips page.

^ TOP ^












Manufacturers and Brands Catalogued and Listed by RC-Scrapyard.


   At present, the RC Model Manufacturers, Brands and Distributors covered by us are: ABC Hobby, Academy, Acme Racing, Agama Racing, Amewi, Ansmann Racing, ARRMA, Team Associated, Atomic RC, Axial, AYK, Bolink, BSD Racing, Capricorn, Carisma, Carson, Caster Racing, Cen, Corally, Custom Works, Durango, Duratrax, ECX - Electrix, Exceed RC, FG Modellsport, FS-Racing, FTX, Fujimi, Gmade, GS-Racing, Harm, HBX, Helion, Heng Long, Himoto Racing, Hirobo, Hitari, Hobao, Hong-Nor, Hot Bodies, HPI, HSP, Intech, Integy, Jamara, JQ Products, Kawada, Kyosho, Losi, LRP, Maisto, Mardave, Marui, Maverick, MCD Racing, Megatech, Mugen, New Bright, Nichimo, Nikko, Nkok, Ofna, Pro-Pulse, Protech, PTI, RC4WD, Redcat Racing, RJ-Speed, Robitronic, Schumacher, Seben, Serpent, Smartech, Sportwerks, Step-Up, Tamiya, Team-C Racing, Team Magic, Thunder Tiger, Tomy, Top Racing, Traxxas, Trinity, Tyco, Vaterra RC, Venom, VRX Racing, WLToys, X-Factory, Xmods, Xpress, Xray, XTM, Yankee RC, Yokomo, ZD Racing and Zipzaps.

   This is an ongoing project, with new and "lost in time" RC Model Brands being added as they are found and although most of those listed above have been covered in relative detail, some are still being researched and will be completed in the near future.


















Hints and Tips

Damper Pistons

   When you first build your RC model, you will sometimes find that there are a number of different pistons in the kit, with varying numbers of holes or hole sizes in them. Generally, the manufacturer will suggest one particular piston in the car manual and may provide you with a mid range oil weight, but depending on the type of terrain you intend to race your model, their suggestion may not be the best for your needs.

   When it comes to tuning your dampers there are basically two things you need to know about pistons. "Pack" and "Static Damping".

   Pack, is the speed your damper reacts to any quick compression and can be considered to be a consequence of the size or number of holes in the piston. Smaller holes, more pack, larger holes, less pack.

   Static Damping is the amount of resistance you sense when slowly pulling or pushing the piston rod in and out of the damper. As with pack, this is related to the number or size of the piston holes. Larger holes, less static damping, smaller holes more static damping.

   Setting up your dampers is a matter of trial and error. With the car in full race mode, that means with everything installed, place it on a table, then pick up the rear of the car, raising it around six inches and drop it onto the table. The chassis should dip slightly below then back up again to the pre-set ride height, in one smooth movement. If instead, it slaps down onto the table, the pack of your dampers is not enough. In this instance, depending on the setup you are testing, you have two options, thicker oil or smaller holed pistons. If when you do the test the dip is hardly any, then the pack is too hard and you should try thinner oil or bigger holed pistons. Repeat this process for the front of the car. Finally, with both ends adjusted, pick up the entire car and drop it from the same height. Both ends should respond equally when dropped, if not, change your pistons or oil weights until they do.

   After your basic setup, you then need to test your car on the track. If the rear of the car tends to hop excessively over small bumps, the rear dampers have too much pack. You need to change the pistons on the rear for larger holes and also use thicker oil to maintain static damping. If the car chassis bottoms through small bumps and landing on jumps, the pack is not enough. In this instance, change for smaller holes and thinner oil.

   If the car lands nose up from a jump, this is indicative of the front dampers having too much pack. These should be adjusted as described above to keep the car static damping in balance. Nose down obviously means not enough pack ..

   I hope this article has been helpful. Good luck and good racing.

For More Setup Information check out my Hints and Tips page.








Hints and Tips

Ackerman

   So What is Ackerman?

   If you place your car on a table facing away from you and turn the steering to full lock to the left, you will notice the angle the left hand wheel has turned is more than that of the right hand wheel. That is the Ackerman effect.

   Moving your car to the edge of the table, with the wheels still on full lock, push it round a complete circle. What you will notice, is the diameter of the circle made by the inside wheel, is smaller than that of the outside wheel. This is a good thing.

   Consider what would happen if both wheels turned to the same angle. In this example, the inside wheel would have a tendency to drag sideways, making the car unstable and difficult to drive.

   The standard kit setting on the majority of RC Model cars, are generally pretty good for beginners, but when your experience increases, you will find out just what tuning your Ackerman can do for your driving style and why it can be helpful when setting up your car for any particular track.

   Some of the cheaper RC Models have fixed position steering links. Others have various methods to change Ackerman settings, like changing shims under the ball connector etc. These days, most modern cars allow you to adjust your Ackerman by lengthening or shortening the links by simply removing two screws and repositioning the links in relation to the front suspension arms.

   Lengthening the links, by adjusting the pivot points of the steering arms back towards the centre line of the rear axle, will give you Less Ackerman, providing you with more aggressive steering as you enter a corner. Useful on slippery tracks, to counter when the car tends to slide to the outside of the corner as you first turn into it.

   Shortening the links, by adjusting the pivot points of the steering arms more forward of the centre line of the rear axle, will give you More Ackerman, making cornering less aggressive, more predictable and improving car stability, better for high grip tracks, with smooth sweeping corners.

   How to implement these adjustments varies from model to model so you will have to refer to your manual for full instructions.

For More Setup Information check out my Hints and Tips page.










On/Off Road
RC Models:

Radio
Equipment:

Accessories: