RCScrapyard ► Iconic Vintage Radio Controlled (RC) Model Car Archive ► Kyosho Axis EX
RCScrapyard Radio Controlled Models
Flags

1/12 Scale Electric Pan Car:

Kyosho Axis EX - # 3153 (Radio Controlled Model Review)


Navigation: Sitemap  ▶  Manufacturers  ▶  Kyosho

History + Information (and How To Set-up Tips):


  Released by Kyosho in 1989, the Axis EX - # 010386 / # 3153 - was in production for 3 years, ending in 1991.

  The Carbon epoxy plate saddle pack chassis, had a carbon epoxy rear axle, sliding pillar front suspension, fine pitch drive gears and a full set of ball bearings.

Kyosho Axis EX Pan Car
▼ Scroll Down for More Images ▼


  To race the Kyosho Axis EX, it requires a high level of tuning for improved stability when cornering, to keep it on the track and give you more grip under acceleration. Even the smallest change in your cars settings can make a Big difference. Our simple to follow instruction chart will show how to attain the best Set-up for your personal requirements.

ebay









Gas/Nitro Engines Body Shells Radio Transmitters etc Tires Wheels/Rims Electronic Speed Controllers Battery Packs / Chargers Electric Motors












Items For Sale:






Flags

★ Kyosho Axis EX ★
Kyosho Axis EX

★ Kyosho Axis EX Chassis ★
Kyosho Axis EX Chassis

★ Kyosho Axis EX Chassis ★
Kyosho Axis EX Chassis


General Information and Advice

   For those starting in Radio Controlled Racing, here are a few Hints and Tips: Firstly, buy a Kit not an RTR. That way, if something breaks you will have some idea how to fix it.

   Radio Controlled Model Cars are very fragile and easily broken. The main parts to protect are the Front Wishbones, Suspension Shock Towers, Dampers, Hub Carriers, Kingpins, Uprights and Toe in Blocks, so make sure you have a good strong front bumper and Lexan or Hard Plastic Body Shell and if available for your model, a protective under tray, to prevent grit and dust getting into any moving parts.

   The Steering Servo is also a weakness in high speed crash situations, so get yourself some good strong Servo Mount and Servo Saver. Also I would recommend Titanium Shafts, Turnbuckles, Tie Rods and pivot/steering shafts and if available for your model, lightweight Titanium Drive shafts, dog bones and CVD (Constant Velocity Drives). The standard steel types are far too easily bent.

   Gearing is another problem area on RC model cars. Head on collisions can easily break off gear teeth on Nylon/Plastic Spur Gears and even Bevel Gears inside the Gearbox. Heavy impacts can also loosen nuts and self taping screws that hold the Motor in Position, allowing the Pinion Gear to pull out of mesh slightly and rip the tops of the teeth on your Spur Gear. To avoid this to some degree, fit locking nuts and a new motor mount from time to time, so the self taping screws that hold the motor in position have less chance to come loose.

   Ball joints always cause problems. For top level Radio Controlled model car racing, the plastic ball connectors should be checked and if deemed necessary changed after every meeting. A simple thing like a loose fitting connector breaking free could easily end your race, so better safe than sorry.

   Many New car kits come with Nylon and Sintered Brass Ring type bearings. My advice is to discard these before initial installation and buy a good Hop-up set of Shielded Steel Ball Bearings. Or if you are serious about your racing, Teflon or Ceramic Bearings.

   One final piece of advice about the Setup of your Car. Keep the Centre of Gravity as low as possible. Ride Height is all important. For On Road Drift/Touring cars the Ride Height should be no more than 5mm, for Buggys, Trucks, Truggys and Monster Trucks, as low as possible depending on the track conditions. If Body Roll is a problem, handling can be improved with the use of Stabilizers, Anti roll or Sway Bars, stiffer Tuning Springs and, or thicker Silicon Oil in the Dampers. Also find somewhere to mount the Transponder as low in the Chassis as possible.

▼ Scroll Down for More Articles and Advice ▼

Or, check out our RC Model Car Setup Guide

^ TOP ^












Manufacturers and Brands Catalogued and Listed by RC-Scrapyard.


   At present, the RC Model Manufacturers, Brands and Distributors covered by us are: ABC Hobby, Academy, Acme Racing, Agama Racing, Amewi, Ansmann Racing, ARRMA, Team Associated, Atomic RC, Axial, AYK, Bolink, BSD Racing, Capricorn, Carisma, Carson, Caster Racing, Cen, Corally, Custom Works, Durango, Duratrax, ECX - Electrix, Exceed RC, FG Modellsport, FS-Racing, FTX, Fujimi, Gmade, GS-Racing, Harm, HBX, Helion, Heng Long, Himoto Racing, Hirobo, Hitari, Hobao, Hong-Nor, Hot Bodies, HPI, HSP, Intech, Integy, Jamara, JQ Products, Kawada, Kyosho, Losi, LRP, Maisto, Mardave, Marui, Maverick, MCD Racing, Megatech, Mugen, New Bright, Nichimo, Nikko, Nkok, Ofna, Pro-Pulse, Protech, PTI, RC4WD, Redcat Racing, RJ-Speed, Robitronic, Schumacher, Seben, Serpent, Smartech, Sportwerks, Step-Up, Tamiya, Team-C Racing, Team Magic, Thunder Tiger, Tomy, Top Racing, Traxxas, Trinity, Tyco, Vaterra RC, Venom, VRX Racing, WLToys, X-Factory, Xmods, Xpress, Xray, XTM, Yankee RC, Yokomo, ZD Racing and Zipzaps.

   This is an ongoing project, with new and "lost in time" RC Model Brands being added as they are found and although most of those listed above have been covered in relative detail, some are still being researched and will be completed in the near future.


















Hints and Tips

Damper Pistons

   When you first build your RC model, you will sometimes find that there are a number of different pistons in the kit, with varying numbers of holes or hole sizes in them. Generally, the manufacturer will suggest one particular piston in the car manual and may provide you with a mid range oil weight, but depending on the type of terrain you intend to race your model, their suggestion may not be the best for your needs.

   When it comes to tuning your dampers there are basically two things you need to know about pistons. "Pack" and "Static Damping".

   Pack, is the speed your damper reacts to any quick compression and can be considered to be a consequence of the size or number of holes in the piston. Smaller holes, more pack, larger holes, less pack.

   Static Damping is the amount of resistance you sense when slowly pulling or pushing the piston rod in and out of the damper. As with pack, this is related to the number or size of the piston holes. Larger holes, less static damping, smaller holes more static damping.

   Setting up your dampers is a matter of trial and error. With the car in full race mode, that means with everything installed, place it on a table, then pick up the rear of the car, raising it around six inches and drop it onto the table. The chassis should dip slightly below then back up again to the pre-set ride height, in one smooth movement. If instead, it slaps down onto the table, the pack of your dampers is not enough. In this instance, depending on the setup you are testing, you have two options, thicker oil or smaller holed pistons. If when you do the test the dip is hardly any, then the pack is too hard and you should try thinner oil or bigger holed pistons. Repeat this process for the front of the car. Finally, with both ends adjusted, pick up the entire car and drop it from the same height. Both ends should respond equally when dropped, if not, change your pistons or oil weights until they do.

   After your basic setup, you then need to test your car on the track. If the rear of the car tends to hop excessively over small bumps, the rear dampers have too much pack. You need to change the pistons on the rear for larger holes and also use thicker oil to maintain static damping. If the car chassis bottoms through small bumps and landing on jumps, the pack is not enough. In this instance, change for smaller holes and thinner oil.

   If the car lands nose up from a jump, this is indicative of the front dampers having too much pack. These should be adjusted as described above to keep the car static damping in balance. Nose down obviously means not enough pack ..

   I hope this article has been helpful. Good luck and good racing.

For More Setup Information check out my Hints and Tips page.








Hints and Tips

Emergency Plastic Part Repairs

   It always happens when you least expect it. You are racing hard; and suddenly some idiot decides to side swipe you' and break your front wishbone. Even though you may carry spare parts for just about everything on your car, it always seems to be the same part that breaks and although you made a mental note the last time it happened to get a replacement you soon realise those mental notes were not worth the paper they are written on.

   So there you are, in the middle of nowhere with no spares. You ask around and no one has anything like your car, least of all parts for it and the closest model shop is 100 miles away. What are you supposed to do now?

   Some kind of repair is your only option.

   The one thing quite a few people think of first is superglue, but that kind of repair won't even get you around the first corner.

   What you need is something much stronger and the only way you can do that requires a good quality soldering iron, the plastic sprue (the bit left over when you remove all the parts for your car) or another broken part made from the same plastic.

   Using the largest tip you have, set the temperature so that it melts the plastic, but does not vaporise it. Place your broken part on a flat surface that will not be affected by the heat from the iron. I use the glass plate I have for setting the wheel camber of my model. Next, cut a piece of scrap plastic long enough for you to be able to hold on one end, as you work with it and place it over the break. At the point directly over the break, carefully melt the scrap plastic until it is around one millimetre above the break.

   Gently slide the iron sideways, depositing the scrap plastic about five millimetres either side and around the break. At each end of the fix, try to meld the scrap and broken part plastic. Picking up the broken part, continue the melding around each side of the break, then place it down the flat surface and repeat the process on the other side.

   When satisfied, switch off the iron and allow the plastic to cool. Using a modelling knife, carefully, cut away any excess plastic, but not too much.

   With a little practice a fix like this can be almost as strong as a new part and can save you a whole lot of anguish.

For More Setup Information check out my Hints and Tips page.











On/Off Road
RC Models:

Radio
Equipment:

Accessories: