RCScrapyard ► Iconic Vintage Radio Controlled (RC) Model Car Archive ► HPI Apache SC Flux.
RCScrapyard Radio Controlled Models
Flags

1/8 Scale Electric Short Course Truck:

HPI Apache SC Flux - # 107104 / # 107105 (Radio Controlled Model Review)


Navigation: Sitemap  ▶  Manufacturers  ▶  HPI

History, Info (and How To Set-up Tips) for the HPI Apache SC Flux:


  Introduced by HPI (Hobby Products International) in 2011, the 4WD Apache SC Flux Short Course Truck - # 107104 / # 107105 - was based on the HB D8 Buggy and came RTR with a Flux Alphastar 2350Kv Brushless Motor, Flux Q-Base Brushless ESC and 2.4GHz radio system.

  The HPI Racing model is shaft driven, on an alloy plate chassis, with gear type differentials, coil spring over oil filled dampers, dogbone prop-shafts, with rear dogbone and front universal joint drive-shafts and a full set of ball bearings.

HPI Apache SC Flux - 1:8 Electric Short Course Truck
▼ Scroll Down for More Images ▼


  To race the HPI Apache SC Flux, it must be fine tuned to improve handling, provide responsive steering and give you the grip to cruise around corners at high speed, without slipping off the track. Small adjustments can make a Big difference and our step by step procedure, will guide you to the best Set-up for your individual driving style.

ebay









Gas/Nitro Engines Body Shells Radio Transmitters etc Tires Wheels/Rims Electronic Speed Controllers Battery Packs / Chargers Electric Motors












Items For Sale:






Flags

★ HPI Racing Apache SC Flux Chassis ★
HPI Racing Apache SC Flux Chassis

★ HPI Racing Apache SC Flux Chassis ★
HPI Racing Apache SC Flux Chassis


Buying a Used HPI Apache SC Flux Truck (and What to look for)


   Buying a used HPI Apache SC Flux Electric Truck, or any used RC Model, has a number of advantages. It is generally cheaper than new, ready built and may come with a variety of expensive hop-ups already installed. Cheap, pre-loved bargains are always becoming available. However, depending on the age of your purchase, it may need a little tender loving care before you can take it out on the back yard.

   The one thing you will always need is an instruction manual. If not supplied with your purchase, they can often be downloaded from the HPI website, or purchased separately on eBay. With an instruction manual, any problems with your model Truck you may discover can easily be fixed.

Dampers
   When you receive your used HPI Truck, make a general visual inspection of the chassis, front and rear wishbones, suspension shock towers etc, for any broken parts that may need to be replaced. Then, take a screwdriver and box spanner and check each self tapping screw and nut for security, taking care not to over tighten.

   Next, for those HPI models with oil filled shock absorbers, remove them from the chassis and dismantle the coil springs. The damper shafts should push in and pull out with a smooth action. If you feel a jolt as you change direction, this means the oil has leaked out and must be topped up. At the same time, change the O-Ring seals to prevent more leakage. Also check the damper shafts for damage. If they are scratched, change them as soon as possible.

   If the body shell of your HPI Apache SC Flux is broken, ripped or damaged in any way, this can be easily repaired with rubber solution glue. Also, for added protection and if available for your Apache SC Flux model, fit an under guard to stop dirt and gravel entering the chassis.

Titanium Turnbuckles
   Examine the drive shafts for wear and replace as required. If possible, change them for titanium. The steel shafts wear and bend too easily.

   If you intend to race your Apache SC Flux Truck model at a competitive level, I would also recommend you obtain and fit titanium pivot shafts, turnbuckles, tie rods and steering rods.

   The gearbox of your used Truck should be opened up to check for gear wear and lubrication. A thin coat of grease is often used on internal gears and although this is fine for basic running around on the back yard, if you intend to race your Truck at a higher level, this should be removed and replaced with racing oil (ZX1 or Teflon Oil). Of course, this should be reapplied after each race meeting.

Spur Gears
   Gears are a weakness on all Truck RC models. Head on collisions can easily damage the gear teeth on nylon and plastic spur gears. Heavy impacts can also loosen the nuts or self tapping screws that hold the Electric Motor in Position, allowing the pinion gear to pull out of mesh slightly and rip the tops off the teeth on your spur gear. To minimise this possibility, fit bolts with locking nuts to the Electric Motor mount and remember to check them for security after every two or three runs.

   Ball joints always cause problems. For top level Electric Truck racing, the plastic ball connectors should be checked and if deemed necessary changed after every meeting. A simple thing like a loose fitting connector popping off could easily end your race, so better safe than sorry.

Servo Gears
   The Apache SC Flux steering servo is also prone to damage. In high speed crash situations, the fragile gear teeth of the servo can be broken off, rendering your expensive servo useless, so be sure to obtain a good quality "Servo Saver". Check out my Servo Information article.

   If body roll on your HPI Apache SC Flux is a problem, handling can be improved with the use of stabilizers, anti roll or sway bars, stiffer tuning springs and, or, thicker silicone oil in the dampers.

Ball Bearings
   If your used HPI Truck comes with plastic and sintered brass bushings (ring type bearings), check the shafts that run in them for wear. Dust and grit can get into these bearings and abrade the shafts. Therefore, you should replace them all with shielded ball bearings. If the model has been run with ring type bearings, you may have to change all the axles and driveshafts. For more information, take a look at my article, How to get the best from your Bearings.

   Finally, good luck with your Apache SC Flux model and good racing.


▼ Scroll Down for More Articles and Advice ▼

Or, check out our RC Model Car Setup Guide


^ TOP ^












Manufacturers and Brands Catalogued and Listed by RC-Scrapyard.


   At present, the RC Model Manufacturers, Brands and Distributors covered by us are: ABC Hobby, Academy, Acme Racing, Agama Racing, Amewi, Ansmann Racing, ARRMA, Team Associated, Atomic RC, Axial, AYK, Bolink, BSD Racing, Capricorn, Carisma, Carson, Caster Racing, Cen, Corally, Custom Works, Durango, Duratrax, ECX - Electrix, Exceed RC, FG Modellsport, FS-Racing, FTX, Fujimi, Gmade, GS-Racing, Harm, HBX, Helion, Heng Long, Himoto Racing, Hirobo, Hitari, Hobao, Hong-Nor, Hot Bodies, HPI, HSP, Intech, Integy, Jamara, JQ Products, Kawada, Kyosho, Losi, LRP, Maisto, Mardave, Marui, Maverick, MCD Racing, Megatech, Mugen, New Bright, Nichimo, Nikko, Nkok, Ofna, Pro-Pulse, Protech, PTI, RC4WD, Redcat Racing, RJ-Speed, Robitronic, Schumacher, Seben, Serpent, Smartech, Sportwerks, Step-Up, Tamiya, Team-C Racing, Team Magic, Thunder Tiger, Tomy, Top Racing, Traxxas, Trinity, Tyco, Vaterra RC, Venom, VRX Racing, WLToys, X-Factory, Xmods, Xpress, Xray, XTM, Yankee RC, Yokomo, ZD Racing and Zipzaps.

   This is an ongoing project, with new and "lost in time" RC Model Brands being added as they are found and although most of those listed above have been covered in relative detail, some are still being researched and will be completed in the near future.


















Hints and Tips

Toe Angle

   When you first build your RC model car, you will no doubt have made all the settings advised in the manufacturers' manual and will take it out on the back yard not thinking of things like camber, caster or toe-in I know I did. It's only when you get competitive that you start learning about these things and just what a big difference they can make to the handling of your car. One of the more effective of these adjustments is Toe-in.

   The term, toe-in, toe-out, or toe-angle, refers to the alignment of the front or rear wheels, when viewed from above and is easily adjusted via the track rods or turnbuckles that link to the steering mechanism or directly to the steering servo horn.

   Front toe-in reduces steering when entering a corner, but improves steering response on corner exit under acceleration. On the straights, toe-in will also improve the cars stability while accelerating.

   Front toe-out will improve steering on corner entry, but makes the car unstable under acceleration on the straights and on bumpy tracks. The usual recommendation is to have up to 1 degree of either toe-in or toe out.

   Rear toe-in is generally found as the standard setting on most on-road and off-road RC models.

   More rear toe-in provides the car with more power under-steer, as well as improved stability and rear end traction. This setting is recommended for low grip tracks.

   Less rear toe-in slightly reduces steering on corner entry, but improved steering under acceleration.

   To measure toe-angle, I used to use my trusty vernier callipers to measure the width at the front of the wheels and the rear of the wheels and using this information along with the diameter of the wheels simply calculate the angle. Or, you could alternatively use this data to draw a triangle on a sheet of paper and measure the angle with your trusty school protractor.

For More Setup Information check out my Hints and Tips page.







Hints and Tips


How to Charge Rechargeable Batteries
for Radio Controlled Models

Ni-Cad (Nickel Cadmium) Batteries


1/  All Ni-Cad Batteries have to be Discharged soon after use. This is to avoid the dreaded "Memory" effect that on subsequent re-charges can cause a momentary drop in performance during a race. A simple discharger can be made from a car 12v bulb.

2/  Try to time your charge to complete just before a race. This will ensure maximum punch and duration. If a Ni-Cad is left to cool after a charge this advantage dissipates.

3/  The higher the charge current the more Punch the Ni-Cad battery will have (up to around 8 amps), however, the downside to this is a reduction in duration and effective battery life.

4/  Ni-Cad Batteries should be left to cool for about an hour after use before recharging. This will increase the effective life of the battery.


Ni-Mh (Nickel Metal Hydride) Batteries


1/  Never charge Ni-Mh batteries at a current higher than 4.5 amps. Although these batteries can give a higher voltage than Ni-Cad Batteries, they are much more sensitive and easy to damage if charged too quickly.

2/  Charging methods for Ni-Mh batteries can also be detrimental. The best I found was the "Slope" method. Avoid "Pulse" charging as this tends to effect crystal formation detrimentally and (it seems to kill them off) thus reduces duration over time.

3/  If using a temperature cut off charger on Ni-Mh batteries set to no more than 40 Degrees Centigrade. Any higher than this can damage the crystals.

4/  It is not necessary to discharge Ni-Mh Batteries. Unlike Ni-Cad batteries they do not develop a memory. Also, if they are totally discharged they sometimes will not charge straight after and need to be coaxed with a 10 minute trickle charge.

5/  Ni Mh Batteries can be recharged shortly after use without any discernable detrimental effects.


Li-Po (Lithium-Polymer) Batteries


1/  Li-Po batteries are a huge step forward in performance compared with Ni-Cad and Ni-Mh batteries. However, care has to be taken when charging. If certain procedures are not followed they could burst into flames or even explode, therefore I do not recommend Li-Po batteries for RC beginners.

2/  Li-Po batteries are more expensive and have a shorter effective life. Generally considered to be between 200 to 400 charge cycles compared to 1000+ for Ni-Cad and Ni-Mh.

3/  Consider a Battery pack listed as "2S 5000Mah 40c 2C".
"2S" is the number of cells in the pack, in this case 2 cells. Each cell provides around 3.7 Volts, so a 2S pack is around 7.4 Volts.
"5000Mah" (Mili-Amp-Hours) is the capacity. The amount of charge the pack can hold.
"40c" is the maximum Discharge rate. Which in our example would be calculated as 5000 (Mah) x 40 = 200000Ma (200 Amps).
"2C" is the maximum Charge rate. 1C being 5 Amps, so in our example 2 x 5 = 10 Amps.

4/  To safely charge your Li-Po Battery I would recommend a good Computerised charger, preferably one that can handle a Charge current of around 25A and always place the charging battery on a fireproof surface.

5/  Finally. NEVER leave your charging Li-Po battery unattended and NEVER EVER charge it above the recommended rate. When not in use, store with around 60% charge remaining in a fireproof box.


For More Setup Information check out my Hints and Tips page.









On/Off Road
RC Models:

Radio
Equipment:

Accessories: