RCScrapyard ► Iconic Vintage Radio Controlled (RC) Model Car Archive ► Himoto ZmotoZ-3. HI3101 / HI3101BL.
RCScrapyard Radio Controlled Models
Flags

1/10 Scale Electric Buggy:

Himoto ZmotoZ-3 - # HI3101 / # HI3101BL (Radio Controlled Model)


Navigation: Sitemap  >  Manufacturers  >  Himoto Racing

All Manufacturers: Model Types  >  Buggys  >  1/10 Electric Buggys

History, Info (and How To Set-up Tips) for the ZmotoZ-3:


  Introduced by Himoto Racing circa 2011 and previously known as the Vega Buggy, the 4WD ZmotoZ3 Buggy was available RTR with either a brushed 540 motor - # HI3101 - or a brushless motor - # HI3101BL - ESC, battery, charger and 2.4Ghz radio system.

  The model was shaft driven, on a molded plastic chassis, with alloy top deck, gear type differentials, coil spring over oil filled dampers, dogbone drive-shafts and ball bearings.

  This model was also available from HSP Racing as the XSTR Pro.

Himoto ZmotoZ-3 - HI3101 - 1:10 Electric Buggy
▼ Scroll Down for More Images ▼


  To race the Himoto ZmotoZ-3, you need to tweak and adjust all you can to give your car improved handling, stability and grip to ease around the curves and keep you on the track. One little setting change can transform your car into a world beater. Just follow our chart to attain the most favourable Set-up to suit your particular needs on any track.

  Learn what to look for when you search for the right Electric Motor for your ZmotoZ-3 and achieve the best Gearing, for the best performance and put you on the winners rostrum.

  See how the highest level racers optimise and halve the friction of their Bearings with some easy to implement tips. Discover what you can do to avert Radio interference, and the optimum conditions to Charge your Batteries, to help keep them in good condition and give you excellent performance.









Gas/Nitro Engines Body Shells Radio Transmitters etc Tires Wheels/Rims Electronic Speed Controllers Battery Packs / Chargers Electric Motors












Items For Sale:






Flags

★ Himoto ZmotoZ3 ★
Himoto ZmotoZ3

★ Himoto ZmotoZ3 Chassis ★
Himoto ZmotoZ3 Chassis

★ Himoto ZmotoZ3 Chassis ★
Himoto ZmotoZ3 Chassis


Buying a Used Himoto ZmotoZ-3 Buggy (and What to look for)


   Buying a used Himoto ZmotoZ-3 Electric Buggy, or any used RC Model, has a number of advantages. It is generally cheaper than new, ready built and may come with a variety of expensive hop-ups already installed. Cheap, pre-loved bargains are always becoming available. However, depending on the age of your purchase, it may need a little tender loving care before you can take it out on the back yard.

   The one thing you will always need is an instruction manual. If not supplied with your purchase, they can often be downloaded from the Himoto website, or purchased separately on eBay. With an instruction manual, any problems with your model Buggy you may discover can easily be fixed.

Dampers
   When you receive your used Himoto Buggy, make a general visual inspection of the chassis, front and rear wishbones, suspension shock towers etc, for any broken parts that may need to be replaced. Then, take a screwdriver and box spanner and check each self tapping screw and nut for security, taking care not to over tighten.

   Next, for those Himoto models with oil filled shock absorbers, remove them from the chassis and dismantle the coil springs. The damper shafts should push in and pull out with a smooth action. If you feel a jolt as you change direction, this means the oil has leaked out and must be topped up. At the same time, change the O-Ring seals to prevent more leakage. Also check the damper shafts for damage. If they are scratched, change them as soon as possible.

   If the body shell of your Himoto ZmotoZ-3 is broken, ripped or damaged in any way, this can be easily repaired with rubber solution glue. Also, for added protection and if available for your ZmotoZ-3 model, fit an under guard to stop dirt and gravel entering the chassis.

Titanium Turnbuckles
   Examine the drive shafts for wear and replace as required. If possible, change them for titanium. The steel shafts wear and bend too easily.

   If you intend to race your ZmotoZ-3 Buggy model at a competitive level, I would also recommend you obtain and fit titanium pivot shafts, turnbuckles, tie rods and steering rods.

   The gearbox of your used Buggy should be opened up to check for gear wear and lubrication. A thin coat of grease is often used on internal gears and although this is fine for basic running around on the back yard, if you intend to race your Buggy at a higher level, this should be removed and replaced with racing oil (ZX1 or Teflon Oil). Of course, this should be reapplied after each race meeting.

Spur Gears
   Gears are a weakness on all Buggy RC models. Head on collisions can easily damage the gear teeth on nylon and plastic spur gears. Heavy impacts can also loosen the nuts or self tapping screws that hold the Electric Motor in Position, allowing the pinion gear to pull out of mesh slightly and rip the tops off the teeth on your spur gear. To minimise this possibility, fit bolts with locking nuts to the Electric Motor mount and remember to check them for security after every two or three runs.

   Ball joints always cause problems. For top level Electric Buggy racing, the plastic ball connectors should be checked and if deemed necessary changed after every meeting. A simple thing like a loose fitting connector popping off could easily end your race, so better safe than sorry.

Servo Gears
   The ZmotoZ-3 steering servo is also prone to damage. In high speed crash situations, the fragile gear teeth of the servo can be broken off, rendering your expensive servo useless, so be sure to obtain a good quality "Servo Saver". Check out my Servo Information article.

   If body roll on your Himoto ZmotoZ-3 is a problem, handling can be improved with the use of stabilizers, anti roll or sway bars, stiffer tuning springs and, or, thicker silicone oil in the dampers.

Ball Bearings
   If your used Himoto Buggy comes with plastic and sintered brass bushings (ring type bearings), check the shafts that run in them for wear. Dust and grit can get into these bearings and abrade the shafts. Therefore, you should replace them all with shielded ball bearings. If the model has been run with ring type bearings, you may have to change all the axles and driveshafts. For more information, take a look at my article, How to get the best from your Bearings.

   Finally, good luck with your ZmotoZ-3 model and good racing.


For More on how to Setup your Buggy, check out my Hints and Tips page.


^ TOP ^












Manufacturers and Brands Catalogued and Listed by RC-Scrapyard.


   At present, the RC Model Manufacturers, Brands and Distributors covered by us are: ABC Hobby, Academy, Acme Racing, Agama Racing, Amewi, Ansmann Racing, ARRMA, Team Associated, Atomic RC, Axial, AYK, Bolink, BSD Racing, Capricorn, Carisma, Carson, Caster Racing, Cen, Corally, Custom Works, Durango, Duratrax, ECX - Electrix, Exceed RC, FG Modellsport, FS-Racing, FTX, Fujimi, Gmade, GS-Racing, Harm, HBX, Helion, Heng Long, Himoto Racing, Hirobo, Hitari, Hobao, Hong-Nor, Hot Bodies, HPI, HSP, Intech, Integy, Jamara, JQ Products, Kawada, Kyosho, Losi, LRP, Maisto, Mardave, Marui, Maverick, MCD Racing, Megatech, Mugen, New Bright, Nichimo, Nikko, Nkok, Ofna, Pro-Pulse, Protech, PTI, RC4WD, Redcat Racing, RJ-Speed, Robitronic, Schumacher, Seben, Serpent, Smartech, Sportwerks, Step-Up, Tamiya, Team-C Racing, Team Magic, Thunder Tiger, Tomy, Top Racing, Traxxas, Trinity, Tyco, Vaterra RC, Venom, VRX Racing, WLToys, X-Factory, Xmods, Xpress, Xray, XTM, Yankee RC, Yokomo, ZD Racing and Zipzaps.

   This is an ongoing project, with new and "lost in time" RC Model Brands being added as they are found and although most of those listed above have been covered in relative detail, some are still being researched and will be completed in the near future.





















Himoto ZmotoZ-3 Brushless - HI3101BL
Himoto ZmotoZ-3 Brushless - HI3101BL - 1:10 Electric Buggy


Hints and Tips

Slipper Clutch and Hydra-Drive

   More often installed on off road RC Models, the Slipper Clutch has been around since the late 1990s. Basically the idea is to prevent wheel spin and increase traction under acceleration, to improve the cars stability from a standing start, when landing from jumps or on corner exits. It also protects the spur gear and drivetrain, to some degree, when using a high torque motor.

   The design is quite simple, employing two independent metal plates, one generally fixed to the spur gear and the other to the drive mechanism, clamping onto a fibre or rubber ring or pad. Adjustment is commonly achieved by slackening or tightening a spring loaded nut on the end of the spur gear mount.

   Setting up the slipper clutch can take some time and is a matter of individual preference, but normally the way to do this is from a standing start, jamming on the throttle and simply getting the feel of the car for that particular surface, being grass, gravel or dust. Personally I adjust it to give me around a metre and a half slip, before it achieves full drive. Wear on the slipper clutch is natural and often has to be readjusted after each race.

   The Hydra-Drive, or Fluid Coupling design has actually been around since the 1950s, but only came to RC a couple of years after the introduction of the slipper clutch. In principle, the Hydra-Drive is supposed to give similar results to the slipper clutch but need less continuous adjustment. In practice, for me anyway, it was not easy to live with.

   Hydra-Drives employ two independent impellers, immersed in silicone oil and enclosed in a sealed housing. Again, like the slipper clutch, one impeller is fixed to the spur gear, the other the drive. As power is applied, the spur gear will spin its impeller, until through the oil, drive is picked up by the drive impellor. The only real way to adjust the drive was to change the oil viscosity, or in some, the gap between the impellers could be adjusted by shims. All this took time and as far as I am aware, the Hydra-Drive is no longer used in RC.

For More Setup Information check out my Hints and Tips page.







Hints and Tips

Weight

   If you ever step up and enter a regional, national or international event in RC, you will find one specific rule concerning the weight of your car.

   At the time this article was written, the Minimum weight restrictions for 1:10 electric Touring Cars at different events, was between 1350g and 1500g. This includes your Motor, ESC, Receiver, Battery, Body Shell and the transponder.

   Out of the box you will find the majority of 1:10 Touring Cars, with everything onboard, are way over this Minimum weight and unless you are good enough to attract sponsors, getting your car down to anything approaching that minimum weight will be very expensive.

   There are things you can buy like micro ESC and Receivers. But Batteries and Motors are what they are and you have to work around them.

   To reduce the weight of your chassis, there are a number of things you can do. If the car you have is generally considered competitive enough, there are often carbon fibre main chassis, shock mounts and other alternative parts available, but they are expensive. And when the new version of your model comes out all the money you have spent is lost.

   The most cost effective weight reduction is the metal parts of your chassis. UJs, Drive and Pivot shafts and the like tend to vary from model to model, but turnbuckles can often be transferred and lengthened or shortened by using plastic ball connectors, so titanium is a consideration.

   Screw sets can also be transferred from car to car. Titanium screws and wheel nuts are always available, but there is a cheaper alternative Aluminium screws and nuts can reduce your cars weight cheaply, but be careful not to over-tighten them, aluminium is not as strong as titanium and can easily shear off if you are over zealous.

   Another weight reduction option is to drill holes along the base of the chassis. However, I do not recommend this. For one thing you are reducing the strength and making the chassis less rigid, but you are also raising the centre of gravity of your car, which can affect stability.

   If you do manage to get your car weight below the minimum allowed, this will give you an opportunity to add weight where you want it and lower the cars centre of gravity.

   One last tip: Knitting needles. When I first started in RC, money was tight and my dad came up with all kinds of ideas to reduce weight. He obtained a 3mm dye and found some of my mums old aluminium knitting needles that were just the right diameter. Having determined the length of the turnbuckles needed for my setup, he cut them to those lengths and threaded each end, so he could put plastic ball sockets on them. Adjusting them was a bit of a pain and they could be a bit fragile in crash situations, but they saved us lots of money over those early years.

For More Setup Information check out my Hints and Tips page.










On/Off Road
RC Models:

Radio
Equipment:

Accessories: