RCScrapyard ► Iconic Vintage Radio Controlled (RC) Model Car Archive ► Himoto Megae-XB10.
RCScrapyard Radio Controlled Models
Flags

1/10 Scale Electric Buggy:

Himoto Megae XB10 - # HI3188 / # HI3188BL (Radio Controlled Model Review)


Navigation: Sitemap  ▶  Manufacturers  ▶  Himoto Racing

History, Info (and How To Set-up Tips) for the Megae XB10:


  Introduced by Himoto Racing circa 2009, the 4WD Megae XB10 Buggy, was available with either a brushed 540 motor - # HI3188 - or a brushless motor - # HI3188BL - ESC, battery, charger and 2.4Ghz radio system.

  The model is shaft driven, on a molded plastic chassis, gear type differentials, coil spring over oil filled dampers, dogbone drive-shafts and ball bearings.

Himoto Megae-XB10
▼ Scroll Down for More Images ▼


  To race the Himoto Megae XB10, it requires a high level of tuning for improved stability when cornering, to keep it on the track and give you more grip under acceleration. Even the smallest change in your cars settings can make a Big difference. Our simple to follow instruction chart will show how to attain the best Set-up for your personal requirements.

ebay









Gas/Nitro Engines Body Shells Radio Transmitters etc Tires Wheels/Rims Electronic Speed Controllers Battery Packs / Chargers Electric Motors












Items For Sale:






Flags

★ Himoto MegaE XB10 ★
Himoto XB10

★ Himoto MegaE XB10 Chassis ★
Himoto XB10 Chassis

★ Himoto MegaE XB10 Chassis ★
Himoto XB10 Chassis

★ Himoto MegaE XB10 Chassis ★
Himoto XB10 Chassis

★ Himoto MegaE XB10 Chassis ★
Himoto XB10 Chassis


Buying a Used Himoto Megae XB10 Buggy (and What to look for)


   Buying a used Himoto Megae XB10 Electric Buggy, or any used RC Model, has a number of advantages. It is generally cheaper than new, ready built and may come with a variety of expensive hop-ups already installed. Cheap, pre-loved bargains are always becoming available. However, depending on the age of your purchase, it may need a little tender loving care before you can take it out on the back yard.

   The one thing you will always need is an instruction manual. If not supplied with your purchase, they can often be downloaded from the Himoto website, or purchased separately on eBay. With an instruction manual, any problems with your model Buggy you may discover can easily be fixed.

Dampers
   When you receive your used Himoto Buggy, make a general visual inspection of the chassis, front and rear wishbones, suspension shock towers etc, for any broken parts that may need to be replaced. Then, take a screwdriver and box spanner and check each self tapping screw and nut for security, taking care not to over tighten.

   Next, for those Himoto models with oil filled shock absorbers, remove them from the chassis and dismantle the coil springs. The damper shafts should push in and pull out with a smooth action. If you feel a jolt as you change direction, this means the oil has leaked out and must be topped up. At the same time, change the O-Ring seals to prevent more leakage. Also check the damper shafts for damage. If they are scratched, change them as soon as possible.

   If the body shell of your Himoto Megae XB10 is broken, ripped or damaged in any way, this can be easily repaired with rubber solution glue. Also, for added protection and if available for your Megae XB10 model, fit an under guard to stop dirt and gravel entering the chassis.

Titanium Turnbuckles
   Examine the drive shafts for wear and replace as required. If possible, change them for titanium. The steel shafts wear and bend too easily.

   If you intend to race your Megae XB10 Buggy model at a competitive level, I would also recommend you obtain and fit titanium pivot shafts, turnbuckles, tie rods and steering rods.

   The gearbox of your used Buggy should be opened up to check for gear wear and lubrication. A thin coat of grease is often used on internal gears and although this is fine for basic running around on the back yard, if you intend to race your Buggy at a higher level, this should be removed and replaced with racing oil (ZX1 or Teflon Oil). Of course, this should be reapplied after each race meeting.

Spur Gears
   Gears are a weakness on all Buggy RC models. Head on collisions can easily damage the gear teeth on nylon and plastic spur gears. Heavy impacts can also loosen the nuts or self tapping screws that hold the Electric Motor in Position, allowing the pinion gear to pull out of mesh slightly and rip the tops off the teeth on your spur gear. To minimise this possibility, fit bolts with locking nuts to the Electric Motor mount and remember to check them for security after every two or three runs.

   Ball joints always cause problems. For top level Electric Buggy racing, the plastic ball connectors should be checked and if deemed necessary changed after every meeting. A simple thing like a loose fitting connector popping off could easily end your race, so better safe than sorry.

Servo Gears
   The Megae XB10 steering servo is also prone to damage. In high speed crash situations, the fragile gear teeth of the servo can be broken off, rendering your expensive servo useless, so be sure to obtain a good quality "Servo Saver". Check out my Servo Information article.

   If body roll on your Himoto Megae XB10 is a problem, handling can be improved with the use of stabilizers, anti roll or sway bars, stiffer tuning springs and, or, thicker silicone oil in the dampers.

Ball Bearings
   If your used Himoto Buggy comes with plastic and sintered brass bushings (ring type bearings), check the shafts that run in them for wear. Dust and grit can get into these bearings and abrade the shafts. Therefore, you should replace them all with shielded ball bearings. If the model has been run with ring type bearings, you may have to change all the axles and driveshafts. For more information, take a look at my article, How to get the best from your Bearings.

   Finally, good luck with your Megae XB10 model and good racing.




▼ Scroll Down for More Articles and Advice ▼

Or, check out our RC Model Car Setup Guide


^ TOP ^












Manufacturers and Brands Catalogued and Listed by RC-Scrapyard.


   At present, the RC Model Manufacturers, Brands and Distributors covered by us are: ABC Hobby, Academy, Acme Racing, Agama Racing, Amewi, Ansmann Racing, ARRMA, Team Associated, Atomic RC, Axial, AYK, Bolink, BSD Racing, Capricorn, Carisma, Carson, Caster Racing, Cen, Corally, Custom Works, Durango, Duratrax, ECX - Electrix, Exceed RC, FG Modellsport, FS-Racing, FTX, Fujimi, Gmade, GS-Racing, Harm, HBX, Helion, Heng Long, Himoto Racing, Hirobo, Hitari, Hobao, Hong-Nor, Hot Bodies, HPI, HSP, Intech, Integy, Jamara, JQ Products, Kawada, Kyosho, Losi, LRP, Maisto, Mardave, Marui, Maverick, MCD Racing, Megatech, Mugen, New Bright, Nichimo, Nikko, Nkok, Ofna, Pro-Pulse, Protech, PTI, RC4WD, Redcat Racing, RJ-Speed, Robitronic, Schumacher, Seben, Serpent, Smartech, Sportwerks, Step-Up, Tamiya, Team-C Racing, Team Magic, Thunder Tiger, Tomy, Top Racing, Traxxas, Trinity, Tyco, Vaterra RC, Venom, VRX Racing, WLToys, X-Factory, Xmods, Xpress, Xray, XTM, Yankee RC, Yokomo, ZD Racing and Zipzaps.

   This is an ongoing project, with new and "lost in time" RC Model Brands being added as they are found and although most of those listed above have been covered in relative detail, some are still being researched and will be completed in the near future.


















Hints and Tips


Rechargeable Batteries
for RC Models


   At the time this article was written, there are four types of Rechargeable Batteries that are commonly in use for Radio Controlled Models.
Ni-Cad (Nickel Cadmium) Batteries have been around the longest. My first stick battery, purchased way back in 1987 was rated at 1200Mah (Mili Amp Hours) and with a silver can 27 Turn motor my Tamiya Boomerang would run around in the back yard for a good seven minutes before slowly coming to a stop. Ni-Cad development continued until around 1998 to a maximum rating of around 2000Mah and matchers pack builders and battery technicians were able to put together six cell packs with voltages approaching 7.4 Volts, to give those that could afford them, an edge over the rest.

   Ni-Mh (Nickel Metal Hydride) Batteries came along in the late 1990s and by the year 2000 were available at ratings up to 3000Mah. Again, matchers and pack builders worked hard to provide the ardent racer with packs to provide that little bit of extra power and ESC manufacturers also chipped in with improved controllers to take full advantage of this new technology.
   Now the problem wasn't gearing the car to get to the end of the race using the available battery power, but to find the brushed motor that could handle gear setting that provided the speed and acceleration without the motor overheating and wearing the commutator too much so it needed a skim after every 2 runs. My favourite at that time was the 9 Double.

   More recently, Li-Po (Lithium-Polymer) Batteries have appeared on the scene, providing are a huge step forward in performance when compared with Ni-Cad and Ni-Mh batteries. However, Li-Po Batteries are much more expensive than previous battery types, have a shorter effective life of between 200 and 400 charge cycles, compared to well over 1000 charge cycles for Ni-Cad and Ni-Mh and a high degree of care has to be taken when charging Li-Po batteries. They have been known to burst into flames or even explode, for this reason I do not recommend Li-Po batteries for RC beginners.
   Another problem with Li-Po packs is they are physically bigger in size, so for those with older "Vintage" models, they may not fit into the provided space for the battery on the chassis.

   The latest development in battery technology for RC are Li-Ion. Originally produced for Laptops, Ipods, Tablets and the like, they are now available for RC models. Much like Li-Po for price and charge cycle life, the power and capacity is a moderate improvement, but for me, at the moment, not worth the expense.

   One final word of warning. NEVER leave your charging Li-Po or Li-Ion battery unattended when being charged and NEVER above the recommended charge rate. After use, store each battery with about 60% charge remaining and always in a fireproof bag.


For More Setup Information check out my Hints and Tips page.






Hints and Tips

Decals

   After spending lots of time and effort to paint your bodyshell, you come to the point where you make it look good by putting on all those flashy decals, but before you rush in with the scissors and start cutting, there are a few things you should do first.

   Good preparation is key to a perfect job, so before you do anything with your decals, you must first of all wash your hands and then make sure the bodyshell is clean and no oil or grime from your previously grubby fingers remains on the Polycarbonate Lexan surface. Methylated spirits is the thing to use, or failing that, use one of those wipes you use for your computer monitor screen. As the body shell dries, you can carefully cut out the decals from the sheet. Do the big ones first and leave the smallest ones for last.

   Now you can prepare to the decals for positioning. Carefully remove the backing paper from the decal with your thumb nail and then put it back on again, but slightly out of line. Place the decal in the position you want it on the bodyshell and when you are satisfied, press down the sticky corner onto the bodyshell and peel off the backing paper, following it along with your fingers to avoid any bubbles. Repeat the process until all your decals are in place.

   Any bubbles or misfitting areas can be corrected by using a sharp modelling knife to carefully pierce the bubbles, or score the poorly fitting area and complete the process with your finger nail.

   Some misalignments can often be fixed using a hair dryer on the offending decal to soften the glue enough to allow you to reposition it, but be careful; Lexan can react like heat-shrink and may wrinkle if you use too much heat.

For More Setup Information check out my Hints and Tips page.










On/Off Road
RC Models:

Radio
Equipment:

Accessories: