RCScrapyard ► Iconic Vintage Radio Controlled (RC) Model Car Archive ► Himoto Corr Truck SCT-10.
RCScrapyard Radio Controlled Models
Flags

1/10 Scale Electric Truck/Truggy:

Himoto SCT-10 - # HI4370 / # HI4370BL (Radio Controlled Model Review)


Navigation: Sitemap  ▶  Manufacturers  ▶  Himoto Racing

History, Info (and How To Set-up Tips) for the SCT-10:


  Introduced by Himoto Racing circa 2011, the 4WD Corr Truck SCT-10 Short Course Truck, was available with either a brushed 540 motor - # HI4370 - or a brushless motor - # HI4370BL - ESC, battery, charger and 2.4Ghz radio system.

  The model is shaft driven, on a molded plastic chassis, gear type differentials, coil spring over oil filled dampers, dogbone drive-shafts and ball bearings.

Himoto SCT-10
▼ Scroll Down for More Images ▼


  To race the Himoto SCT-10, you need to tweak and adjust all you can to give your car improved handling, stability and grip to ease around the curves and keep you on the track. One little setting change can transform your car into a world beater. Just follow our chart to attain the most favourable Set-up to suit your particular needs on any track.

ebay









Gas/Nitro Engines Body Shells Radio Transmitters etc Tires Wheels/Rims Electronic Speed Controllers Battery Packs / Chargers Electric Motors












Items For Sale:






Flags

★ Himoto Corr-Truck SCT-10 ★
Himoto Corr-Truck SCT-10

★ Himoto Corr-Truck SCT-10 Chassis ★
Himoto Corr-Truck SCT-10 Chassis

★ Himoto Corr-Truck SCT-10 Chassis ★
Himoto Corr-Truck SCT-10 Chassis


Buying a Used Himoto SCT-10 Truck (and What to look for)


   Buying a used Himoto SCT-10 Electric Truck, or any used RC Model, has a number of advantages. It is generally cheaper than new, ready built and may come with a variety of expensive hop-ups already installed. Cheap, pre-loved bargains are always becoming available. However, depending on the age of your purchase, it may need a little tender loving care before you can take it out on the back yard.

   The one thing you will always need is an instruction manual. If not supplied with your purchase, they can often be downloaded from the Himoto website, or purchased separately on eBay. With an instruction manual, any problems with your model Truck you may discover can easily be fixed.

Dampers
   When you receive your used Himoto Truck, make a general visual inspection of the chassis, front and rear wishbones, suspension shock towers etc, for any broken parts that may need to be replaced. Then, take a screwdriver and box spanner and check each self tapping screw and nut for security, taking care not to over tighten.

   Next, for those Himoto models with oil filled shock absorbers, remove them from the chassis and dismantle the coil springs. The damper shafts should push in and pull out with a smooth action. If you feel a jolt as you change direction, this means the oil has leaked out and must be topped up. At the same time, change the O-Ring seals to prevent more leakage. Also check the damper shafts for damage. If they are scratched, change them as soon as possible.

   If the body shell of your Himoto SCT-10 is broken, ripped or damaged in any way, this can be easily repaired with rubber solution glue. Also, for added protection and if available for your SCT-10 model, fit an under guard to stop dirt and gravel entering the chassis.

Titanium Turnbuckles
   Examine the drive shafts for wear and replace as required. If possible, change them for titanium. The steel shafts wear and bend too easily.

   If you intend to race your SCT-10 Truck model at a competitive level, I would also recommend you obtain and fit titanium pivot shafts, turnbuckles, tie rods and steering rods.

   The gearbox of your used Truck should be opened up to check for gear wear and lubrication. A thin coat of grease is often used on internal gears and although this is fine for basic running around on the back yard, if you intend to race your Truck at a higher level, this should be removed and replaced with racing oil (ZX1 or Teflon Oil). Of course, this should be reapplied after each race meeting.

Spur Gears
   Gears are a weakness on all Truck RC models. Head on collisions can easily damage the gear teeth on nylon and plastic spur gears. Heavy impacts can also loosen the nuts or self tapping screws that hold the Electric Motor in Position, allowing the pinion gear to pull out of mesh slightly and rip the tops off the teeth on your spur gear. To minimise this possibility, fit bolts with locking nuts to the Electric Motor mount and remember to check them for security after every two or three runs.

   Ball joints always cause problems. For top level Electric Truck racing, the plastic ball connectors should be checked and if deemed necessary changed after every meeting. A simple thing like a loose fitting connector popping off could easily end your race, so better safe than sorry.

Servo Gears
   The SCT-10 steering servo is also prone to damage. In high speed crash situations, the fragile gear teeth of the servo can be broken off, rendering your expensive servo useless, so be sure to obtain a good quality "Servo Saver". Check out my Servo Information article.

   If body roll on your Himoto SCT-10 is a problem, handling can be improved with the use of stabilizers, anti roll or sway bars, stiffer tuning springs and, or, thicker silicone oil in the dampers.

Ball Bearings
   If your used Himoto Truck comes with plastic and sintered brass bushings (ring type bearings), check the shafts that run in them for wear. Dust and grit can get into these bearings and abrade the shafts. Therefore, you should replace them all with shielded ball bearings. If the model has been run with ring type bearings, you may have to change all the axles and driveshafts. For more information, take a look at my article, How to get the best from your Bearings.

   Finally, good luck with your SCT-10 model and good racing.


▼ Scroll Down for More Articles and Advice ▼

Or, check out our RC Model Car Setup Guide


^ TOP ^












Manufacturers and Brands Catalogued and Listed by RC-Scrapyard.


   At present, the RC Model Manufacturers, Brands and Distributors covered by us are: ABC Hobby, Academy, Acme Racing, Agama Racing, Amewi, Ansmann Racing, ARRMA, Team Associated, Atomic RC, Axial, AYK, Bolink, BSD Racing, Capricorn, Carisma, Carson, Caster Racing, Cen, Corally, Custom Works, Durango, Duratrax, ECX - Electrix, Exceed RC, FG Modellsport, FS-Racing, FTX, Fujimi, Gmade, GS-Racing, Harm, HBX, Helion, Heng Long, Himoto Racing, Hirobo, Hitari, Hobao, Hong-Nor, Hot Bodies, HPI, HSP, Intech, Integy, Jamara, JQ Products, Kawada, Kyosho, Losi, LRP, Maisto, Mardave, Marui, Maverick, MCD Racing, Megatech, Mugen, New Bright, Nichimo, Nikko, Nkok, Ofna, Pro-Pulse, Protech, PTI, RC4WD, Redcat Racing, RJ-Speed, Robitronic, Schumacher, Seben, Serpent, Smartech, Sportwerks, Step-Up, Tamiya, Team-C Racing, Team Magic, Thunder Tiger, Tomy, Top Racing, Traxxas, Trinity, Tyco, Vaterra RC, Venom, VRX Racing, WLToys, X-Factory, Xmods, Xpress, Xray, XTM, Yankee RC, Yokomo, ZD Racing and Zipzaps.

   This is an ongoing project, with new and "lost in time" RC Model Brands being added as they are found and although most of those listed above have been covered in relative detail, some are still being researched and will be completed in the near future.


















Hints and Tips

Camber

   Camber is described as the angle of the wheel as you look at it directly from the front or rear of your car and if set correctly will improve your cars cornering ability considerably, by providing increased traction. This simple to make adjustment is considered by many to be one of the most effective changes you can make to your car for better handling.

   Positive Camber is when the top of the wheel is angled outwards. Negative Camber has the top of the wheel angled inwards.

   First of all, get yourself a good camber gauge. All adjustments to your cars camber setting should be made with the car in race mode that means the motor, battery etc in position in the chassis.

   To check the angle of an On Road car, it must have the ride height already set to around 5mm. Place the car on a perfectly flat surface, position your camber gauge against the side of the wheel you are checking and take the camber angle, normally this is between -1 and -3 degrees negative. Next, put a small 1mm thick piece of card under that corner of the car and push the corner down until it touches the card. In this position, check the angle again. It should be between 0 and -0.5 degrees negative camber. If not, pick up the car and put it back down on the flat surface, check and make adjustments, using the turnbuckle, that you consider are needed to achieve your goal. Keep checking and adjusting and repeat for all four corners. What you are aiming for is an angle that will provide your car with the maximum amount of rubber on the track on high speed corners.

   Off Road cars can be adjusted in a similar manner to that described previously, with the ride height set at around 20mm, but in place of the card, use a small booklet or something around 5mm thick. The optimal camber setting is a little more difficult to find for off road cars and depends generally of the track surface you are racing on. Slippery tracks generally require less camber because of reduced suspension movement when cornering, whereas high grip tracks require more camber to compensate for inertial induced body-roll. Depending on the particular model, this setting can be anything between -1 and -5 degrees sometimes more. Check your model manual for details.

   Be aware that for all model types, too much negative camber can reduce straight line traction, but with a good setting for any particular track, the advantage it gives, that of vastly improved cornering stability, far outweigh any negative effects.

   For beginners, this setting is by far the easiest to experiment with. Just take the car out on the back yard and with a few simple turns of a turnbuckle you will soon learn just what difference a small change in your cars setup can do to change its handling ability. Good luck and good racing.

For More Setup Information check out my Hints and Tips page.







Hints and Tips

Damper Pistons

   When you first build your RC model, you will sometimes find that there are a number of different pistons in the kit, with varying numbers of holes or hole sizes in them. Generally, the manufacturer will suggest one particular piston in the car manual and may provide you with a mid range oil weight, but depending on the type of terrain you intend to race your model, their suggestion may not be the best for your needs.

   When it comes to tuning your dampers there are basically two things you need to know about pistons. "Pack" and "Static Damping".

   Pack, is the speed your damper reacts to any quick compression and can be considered to be a consequence of the size or number of holes in the piston. Smaller holes, more pack, larger holes, less pack.

   Static Damping is the amount of resistance you sense when slowly pulling or pushing the piston rod in and out of the damper. As with pack, this is related to the number or size of the piston holes. Larger holes, less static damping, smaller holes more static damping.

   Setting up your dampers is a matter of trial and error. With the car in full race mode, that means with everything installed, place it on a table, then pick up the rear of the car, raising it around six inches and drop it onto the table. The chassis should dip slightly below then back up again to the pre-set ride height, in one smooth movement. If instead, it slaps down onto the table, the pack of your dampers is not enough. In this instance, depending on the setup you are testing, you have two options, thicker oil or smaller holed pistons. If when you do the test the dip is hardly any, then the pack is too hard and you should try thinner oil or bigger holed pistons. Repeat this process for the front of the car. Finally, with both ends adjusted, pick up the entire car and drop it from the same height. Both ends should respond equally when dropped, if not, change your pistons or oil weights until they do.

   After your basic setup, you then need to test your car on the track. If the rear of the car tends to hop excessively over small bumps, the rear dampers have too much pack. You need to change the pistons on the rear for larger holes and also use thicker oil to maintain static damping. If the car chassis bottoms through small bumps and landing on jumps, the pack is not enough. In this instance, change for smaller holes and thinner oil.

   If the car lands nose up from a jump, this is indicative of the front dampers having too much pack. These should be adjusted as described above to keep the car static damping in balance. Nose down obviously means not enough pack ..

   I hope this article has been helpful. Good luck and good racing.

For More Setup Information check out my Hints and Tips page.










On/Off Road
RC Models:

Radio
Equipment:

Accessories: