RCScrapyard ► Iconic Vintage Radio Controlled (RC) Model Car Archive ► FG Competition Stadium Truck 4WD.
RCScrapyard Radio Controlled Models
Flags

1/6 Scale Nitro Truck/Truggy:

FG Competition Stadium Truck 4WD - FG 27000 / FG 27001 (Radio Controlled Model Review)


Navigation: Sitemap  ▶  Manufacturers  ▶  FG Modellsport

History, Info (and How To Set-up Tips) for the Competition Stadium Truck:


  Introduced by FG Modellsport circa 2008, the 4WD Competition Stadium Truck was available with a hydraulic brake system - FG 27000 - or with a mechanical brake system - FG 27001.

  Competition-Line is the top level, with all the upgrades and optional parts as standard.

  The model is belt driven on an alloy plate chassis, with gear type differentials, coil spring over oil filled dampers, universal joint drive-shafts and a full set of ball bearings.

FG Competition-Stadium-Truck
▼ Scroll Down for More Images ▼


  To race the FG Comp Stadium Truck, it needs to be tuned to perfection for better stability, precise steering and provide enough grip to keep you on the track when going around tight bends at high speed. Even the smallest adjustment can change the feel of a car and our simple to follow instructions will guide you to the best Set-up to get you to the front and keep you there.

ebay









Gas/Nitro Engines Body Shells Radio Transmitters etc Tires Wheels/Rims Electronic Speed Controllers Battery Packs / Chargers Electric Motors












Items For Sale:






Flags

★ FG Modellsport Competition Stadium Truck 4WD Chassis ★
FG Modellsport Competition Stadium Truck 4WD Chassis

★ FG Modellsport Competition Stadium Truck 4WD Chassis ★
FG Modellsport Competition Stadium Truck 4WD Chassis


Buying a Used FG Competition Stadium Truck (and What to look for)


   Buying a used FG Competition Stadium Nitro Truck, or any used RC Model, has a number of advantages. It is generally cheaper than new, ready built and may come with a variety of expensive hop-ups already installed. Cheap, pre-loved bargains are always becoming available. However, depending on the age of your purchase, it may need a little tender loving care before you can take it out on the back yard.

   The one thing you will always need is an instruction manual. If not supplied with your purchase, they can often be downloaded from the FG Modellsport website, or purchased separately on eBay. With an instruction manual, any problems with your model Truck you may discover can easily be fixed.

Dampers
   When you receive your used FG Truck, make a general visual inspection of the chassis, front and rear wishbones, suspension shock towers etc, for any broken parts that may need to be replaced. Then, take a screwdriver and box spanner and check each self tapping screw and nut for security, taking care not to over tighten.

   Next, for those FG models with oil filled shock absorbers, remove them from the chassis and dismantle the coil springs. The damper shafts should push in and pull out with a smooth action. If you feel a jolt as you change direction, this means the oil has leaked out and must be topped up. At the same time, change the O-Ring seals to prevent more leakage. Also check the damper shafts for damage. If they are scratched, change them as soon as possible.

   If the body shell of your FG Competition Stadium Truck is broken, ripped or damaged in any way, this can be easily repaired with rubber solution glue. Also, for added protection and if available for your Competition Stadium Truck model, fit an under guard to stop dirt and gravel entering the chassis.

Titanium Turnbuckles
   Examine the drive shafts for wear and replace as required. If possible, change them for titanium. The steel shafts wear and bend too easily.

   If you intend to race your Competition Stadium Truck model at a competitive level, I would also recommend you obtain and fit titanium pivot shafts, turnbuckles, tie rods and steering rods.

   Drive Belts need checking at regular intervals for wear, tension and damage. If deemed necessary, adjust the tensioning pulley until the belt can be depressed in the centre by no more than around 5mm. If the belt was slack, also examine the drive pulleys for wear. The teeth should provide a well seated fit for the belt teeth and not be rounded on the corners. If the belt teeth do not fit snugly, change the pulleys as soon as possible. For top level racing it may be prudent to replace all belts and pulleys after each race meeting.

Spur Gears
   Gears are a weakness on all Truck RC models. Head on collisions can easily damage the gear teeth on nylon and plastic spur gears. Heavy impacts can also loosen the nuts or self tapping screws that hold the Nitro Engine in Position, allowing the pinion gear to pull out of mesh slightly and rip the tops off the teeth on your spur gear. To minimise this possibility, fit bolts with locking nuts to the Nitro Engine mount and remember to check them for security after every two or three runs.

   Ball joints always cause problems. For top level Nitro Truck racing, the plastic ball connectors should be checked and if deemed necessary changed after every meeting. A simple thing like a loose fitting connector popping off could easily end your race, so better safe than sorry.

Servo Gears
   The Competition Stadium steering servo is also prone to damage. In high speed crash situations, the fragile gear teeth of the servo can be broken off, rendering your expensive servo useless, so be sure to obtain a good quality "Servo Saver". Check out my Servo Information article.

   If body roll on your FG Competition Stadium is a problem, handling can be improved with the use of stabilizers, anti roll or sway bars, stiffer tuning springs and, or, thicker silicone oil in the dampers.

Ball Bearings
   If your used FG Truck comes with plastic and sintered brass bushings (ring type bearings), check the shafts that run in them for wear. Dust and grit can get into these bearings and abrade the shafts. Therefore, you should replace them all with shielded ball bearings. If the model has been run with ring type bearings, you may have to change all the axles and driveshafts. For more information, take a look at my article, How to get the best from your Bearings.

   Finally, good luck with your Competition Stadium model and good racing.


▼ Scroll Down for More Articles and Advice ▼

Or, check out our RC Model Car Setup Guide


^ TOP ^












Manufacturers and Brands Catalogued and Listed by RC-Scrapyard.


   At present, the RC Model Manufacturers, Brands and Distributors covered by us are: ABC Hobby, Academy, Acme Racing, Agama Racing, Amewi, Ansmann Racing, ARRMA, Team Associated, Atomic RC, Axial, AYK, Bolink, BSD Racing, Capricorn, Carisma, Carson, Caster Racing, Cen, Corally, Custom Works, Durango, Duratrax, ECX - Electrix, Exceed RC, FG Modellsport, FS-Racing, FTX, Fujimi, Gmade, GS-Racing, Harm, HBX, Helion, Heng Long, Himoto Racing, Hirobo, Hitari, Hobao, Hong-Nor, Hot Bodies, HPI, HSP, Intech, Integy, Jamara, JQ Products, Kawada, Kyosho, Losi, LRP, Maisto, Mardave, Marui, Maverick, MCD Racing, Megatech, Mugen, New Bright, Nichimo, Nikko, Nkok, Ofna, Pro-Pulse, Protech, PTI, RC4WD, Redcat Racing, RJ-Speed, Robitronic, Schumacher, Seben, Serpent, Smartech, Sportwerks, Step-Up, Tamiya, Team-C Racing, Team Magic, Thunder Tiger, Tomy, Top Racing, Traxxas, Trinity, Tyco, Vaterra RC, Venom, VRX Racing, WLToys, X-Factory, Xmods, Xpress, Xray, XTM, Yankee RC, Yokomo, ZD Racing and Zipzaps.

   This is an ongoing project, with new and "lost in time" RC Model Brands being added as they are found and although most of those listed above have been covered in relative detail, some are still being researched and will be completed in the near future.


















Hints and Tips

Roll Center

   One of the least understood settings on RC model cars is concept of roll center. The simple definition of roll center is a point in space that the chassis rolls from side to side as the car maneuvers around a corner.

   To calculate roll center you have to consider things like the height of the axles, the inside and outside camber link positioning, the length of the suspension arms and the location of their inside pivot point. Sounds complicated doesn't it and in truth it is.

   On all RC model cars, most of the cars weight is above the chassis and the center of gravity of the car is not only from front to rear, but also from top to bottom. This point is called the "true" center of gravity and is the point around which the weight of the car will want to roll from side to side, but it is the roll center of the chassis that the chassis will actually roll around, not the center of gravity.

   Once you have determined the positions of roll center and center of gravity, you can calculate the "roll moment". It is this that determines how easily the chassis will roll from side to side.

   But what does all this mean? I hear you ask. Well, it gives you some insight to what changing the position of your camber links can do to the way your car handles.

   Lowering the outside camber links, lowers the roll center, so conversely, raising the outside link position raises the roll center.

   Lowering the inside camber link position raises roll center and raising the inside camber link position, lowers the roll center.

   Any of these adjustments will affect the "roll moment" and therefore you have some control of body roll.

   The length of the camber link bars affects the speed of roll center change as the car driver around corners. Longer links increase the rate of change. Shorter links decreases the rate of change.

   Adjustments to the roll center will change the way the car reacts in a number of ways.

   Lowering the front roll center gives more steering under acceleration, but the car is less responsive. Ideal for smooth high grip tracks, with long sweeping corners.

   Raising the front roll center provides less steering when accelerating out of the corner, but the car feels more responsive and is less prone to traction roll. Best for high grip twisty tracks.

   Lower rear roll center improves grip under acceleration, but reduced grip when breaking. Helpful to avoid traction roll as you enter the corner and tracks with low grip to increase traction.

   Higher rear roll center gives you less under acceleration, but the car is more responsive. Works for high grip twisty tracks to reduce traction roll.

For More Setup Information check out my Hints and Tips page.







Hints and Tips

Ride Height

   To allow the suspension on any RC model to do its work properly it needs to settle in a position that is somewhere between it being able to react to any bumps and holes it may encounter on the track. To do this, it needs to be adjusted to somewhere in-between those limits. That position is termed the ride height and is generally measured with the car race ready, that means with the motor and battery etc installed and is the distance between the underside of the chassis and the ground.

   Simply speaking, determining ride height is dependent on the specific track conditions. For off road models the rule is simple, the bigger the bumps and the deeper the holes, the higher the ride height. On road, the closer the car is to the track, the better it will handle.

   For 1:10 Buggys I generally recommend a starting point for ride height at around 20mm. 1:10 Trucks and Truggys, 30mm upwards, depending on the wheel diameter. For On Road models, as low as possible, but normally the setting is around 5mm.

   Ride height doesn't just affect the way the car handles uneven track conditions, it also influences the way the car handles when cornering. For a stable car, body roll must be kept to a minimum and keeping the ride height low, is by far the best and easiest way to control it.

   Before you begin to set the ride height, it is best to make sure that each pair of shocks are exactly the same length, have the same spring type and same silicone oil weight. Also, if you don't have a ride height gauge of any kind, decide what height you want set your car to and prepare some kind of slip gauge to that dimension, a book, a pen, or anything that measures to what you want. I used an old square plastic servo mount, which was exactly 5mm for my touring car. It may be low tech, but it is just as accurate as any gauge you can buy.

   To set the ride height, the race ready car must be placed on a flat surface. Slide your slip gauge under the chassis and adjust the height by adding or removing tension to the damper springs. This is done on most models by using small C shaped clips, placed over the damper, above the springs, or on a number of top of the range models, this adjustment can be made by screwing a knurled nut on each threaded damper body. As a rule if the springs are compressed by more than 25% they should be replaced by stiffer springs. The gauge should just slide under the chassis on all four corners of the chassis.

For More Setup Information check out my Hints and Tips page.










On/Off Road
RC Models:

Radio
Equipment:

Accessories: