RCScrapyard ► Iconic Vintage Radio Controlled (RC) Model Car Archive ► Ansmann X2.
RCScrapyard Radio Controlled Models
Flags

1/10 Scale Electric Buggy:

Ansmann X2 (Radio Controlled Model)


Navigation: Sitemap  >  Manufacturers  >  Ansmann  >  Ansmann Timeline

All Manufacturers: Model Types  >  Buggys  >  1/10 Electric Buggys

History, Info (and How To Set-up Tips) for the X2


  Introduced by Ansmann circa 2011, the 2WD X2 Buggy - # 122000050 - was the pro version of the Mad Rat.

  The model was based on a molded carbon reinforced plastic chassis, with a ball differential, coil spring over oil filled dampers, universal joint drive shafts, slipper clutch and ball bearings.

Ansmann X2
▼ Scroll Down for More Images ▼


  To race the Ansmann X2, you need to tweak and adjust all you can to give your car improved handling, stability and grip to ease around the curves and keep you on the track. One little setting change can transform your car into a world beater. Just follow our chart to attain the most favourable Set-up to suit your particular needs on any track.

  Learn what to look for when you search for the right Electric Motor for your X2 and achieve the best Gearing, for the best performance and put you on the winners rostrum.

  See how the highest level racers optimise and halve the friction of their Bearings with some easy to implement tips. Discover what you can do to avert Radio interference, and the optimum conditions to Charge your Batteries, to help keep them in good condition and give you excellent performance.









Gas/Nitro Engines Body Shells Radio Transmitters etc Tires Wheels/Rims Electronic Speed Controllers Battery Packs / Chargers Electric Motors












Items For Sale:






Flags

★ Ansmann X2 ★
Ansmann X2

★ Ansmann X2 Chassis ★
Ansmann X2 Chassis

★ Ansmann X2 Chassis ★
Ansmann X2 Chassis

★ Ansmann X2 Chassis ★
Ansmann X2 Chassis


Buying a Used Ansmann X2 Buggy (and What to look for)


   Buying a used Ansmann X2 Electric Buggy, or any used RC Model, has a number of advantages. It is generally cheaper than new, ready built and may come with a variety of expensive hop-ups already installed. Cheap, pre-loved bargains are always becoming available. However, depending on the age of your purchase, it may need a little tender loving care before you can take it out on the back yard.

   The one thing you will always need is an instruction manual. If not supplied with your purchase, they can often be downloaded from the Ansmann website, or purchased separately on eBay. With an instruction manual, any problems with your model Buggy you may discover can easily be fixed.

Dampers
   When you receive your used Ansmann Buggy, make a general visual inspection of the chassis, front and rear wishbones, suspension shock towers etc, for any broken parts that may need to be replaced. Then, take a screwdriver and box spanner and check each self tapping screw and nut for security, taking care not to over tighten.

   Next, for those Ansmann models with oil filled shock absorbers, remove them from the chassis and dismantle the coil springs. The damper shafts should push in and pull out with a smooth action. If you feel a jolt as you change direction, this means the oil has leaked out and must be topped up. At the same time, change the O-Ring seals to prevent more leakage. Also check the damper shafts for damage. If they are scratched, change them as soon as possible.

   If the body shell of your Ansmann X2 is broken, ripped or damaged in any way, this can be easily repaired with rubber solution glue. Also, for added protection and if available for your X2 model, fit an under guard to stop dirt and gravel entering the chassis.

Titanium Turnbuckles
   Examine the drive shafts for wear and replace as required. If possible, change them for titanium. The steel shafts wear and bend too easily.

   If you intend to race your X2 Buggy model at a competitive level, I would also recommend you obtain and fit titanium pivot shafts, turnbuckles, tie rods and steering rods.

   The gearbox of your used Buggy should be opened up to check for gear wear and lubrication. A thin coat of grease is often used on internal gears and although this is fine for basic running around on the back yard, if you intend to race your Buggy at a higher level, this should be removed and replaced with racing oil (ZX1 or Teflon Oil). Of course, this should be reapplied after each race meeting.

Spur Gears
   Gears are a weakness on all Buggy RC models. Head on collisions can easily damage the gear teeth on nylon and plastic spur gears. Heavy impacts can also loosen the nuts or self tapping screws that hold the Electric Motor in Position, allowing the pinion gear to pull out of mesh slightly and rip the tops off the teeth on your spur gear. To minimise this possibility, fit bolts with locking nuts to the Electric Motor mount and remember to check them for security after every two or three runs.

   Ball joints always cause problems. For top level Electric Buggy racing, the plastic ball connectors should be checked and if deemed necessary changed after every meeting. A simple thing like a loose fitting connector popping off could easily end your race, so better safe than sorry.

Servo Gears
   The X2 steering servo is also prone to damage. In high speed crash situations, the fragile gear teeth of the servo can be broken off, rendering your expensive servo useless, so be sure to obtain a good quality "Servo Saver". Check out my Servo Information article.

   If body roll on your Ansmann X2 is a problem, handling can be improved with the use of stabilizers, anti roll or sway bars, stiffer tuning springs and, or, thicker silicone oil in the dampers.

Ball Bearings
   If your used Ansmann Buggy comes with plastic and sintered brass bushings (ring type bearings), check the shafts that run in them for wear. Dust and grit can get into these bearings and abrade the shafts. Therefore, you should replace them all with shielded ball bearings. If the model has been run with ring type bearings, you may have to change all the axles and driveshafts. For more information, take a look at my article, How to get the best from your Bearings.

   Finally, good luck with your X2 model and good racing.


For More on how to Setup your Buggy, check out my Hints and Tips page.


^ TOP ^












Manufacturers and Brands Catalogued and Listed by RC-Scrapyard.


   At present, the RC Model Manufacturers, Brands and Distributors covered by us are: ABC Hobby, Academy, Acme Racing, Agama Racing, Amewi, Ansmann Racing, ARRMA, Team Associated, Atomic RC, Axial, AYK, Bolink, BSD Racing, Capricorn, Carisma, Carson, Caster Racing, Cen, Corally, Custom Works, Durango, Duratrax, ECX - Electrix, Exceed RC, FG Modellsport, FS-Racing, FTX, Fujimi, Gmade, GS-Racing, Harm, HBX, Helion, Heng Long, Himoto Racing, Hirobo, Hitari, Hobao, Hong-Nor, Hot Bodies, HPI, HSP, Intech, Integy, Jamara, JQ Products, Kawada, Kyosho, Losi, LRP, Maisto, Mardave, Marui, Maverick, MCD Racing, Megatech, Mugen, New Bright, Nichimo, Nikko, Nkok, Ofna, Pro-Pulse, Protech, PTI, RC4WD, Redcat Racing, RJ-Speed, Robitronic, Schumacher, Seben, Serpent, Smartech, Sportwerks, Step-Up, Tamiya, Team-C Racing, Team Magic, Thunder Tiger, Tomy, Top Racing, Traxxas, Trinity, Tyco, Vaterra RC, Venom, VRX Racing, WLToys, X-Factory, Xmods, Xpress, Xray, XTM, Yankee RC, Yokomo, ZD Racing and Zipzaps.

   This is an ongoing project, with new and "lost in time" RC Model Brands being added as they are found and although most of those listed above have been covered in relative detail, some are still being researched and will be completed in the near future.


















Information and Advice

Electronic Speed Controllers

History:

   ESC were originally developed to be used in conjunction with brushed 27T stock and modified motors in the late 1970s, early 1980s. Compared to modern day Controllers, they were Bulky and heavy, constructed using basic resistors, rheostats, capacitors and transistors, crammed together on a simple circuit board, to provide stepped but smooth acceleration when compared to the old mechanical, servo operated sweeper Speed Controllers. An Electronic Switch to change the direction of current flow was used on some of these early ESC to give reverse operation. Although they were a vast improvement on the old mechanical speedos of the time, they were expensive, jerky to control and prone to burn out if not carefully looked after.

   As new technology became available, improvements were slowly made and with the introduction of the new FET (Field Effect Transistors) and some basic mass produced silicon chips, ESC were made smaller and their reliability gradually improved.

   By the mid 1990s, "regenerative breaking" was developed. This meant that energy that would have been lost slowing down the car by effectively turning the motor into a generator, was harvested and put back into the battery. This of course was long before F1 had KERS (Kinetic Energy Recovery System) and adjustable anti lock breaking was introduced.

   Brushless Motors came to RC in the late 1990s early 2000s, which required a new breed of ESC to be developed to fully utilise the new technology. Ni-Cad Rechargeable Batteries were superseded by Ni-Mh and more recently Li-Po Batteries which provided higher Current output for the ESC to regulate. The latest ESC now use sensors to manage the motor and can be adjusted remotely to suit varying conditions.


Brushed Motor ESC.

   The "Silver Can" Stock Motors that come in a wide number of RC model kits are often accompanied by a 5 Amps to 20 Amps ESC. However, if you want to upgrade to a more powerful Modified Brushed Motor, 20 Amps may not be enough, so you will have to buy a something well over 20 Amps depending on the number of turns of your motor. As a rough guide, a 9 Single has a much higher current requirement than 20 Single.

Brushless Motor ESC.

   ESC for Brushless Motors are in no way compatible with brushed motors. The DC (Direct Current) input from the battery, on brushless ESC is transformed into three phase AC (Alternating Current). Each "phase" connecting three wires on the Brushless motor. By changing the frequency of the output wave the motor will spin faster for acceleration or slower for breaking. Reverse is simply achieved by changing over any two of the three "phases".
   At the time this article was written, Brushless ESC range from 3 Amps to around 300 Amps.
   For beginners I recommended you buy an ESC and Motor Combo, that way you can be sure the ESC Current rating is correct for the Motor.


For More Setup Information check out my Hints and Tips page.







Hints and Tips

Radio Gear

How to avoid Interference.


1/  The first consideration when installing your Receiver into your Electrically Powered Model is to make sure it is well away from the Negative Battery terminal and the Motor. The Magnetic field can cause stuttering type interference at times of high current draw (i.e., Fast Acceleration)

2/  Make sure the Ariel tube is long enough for the Ariel wire. The tip of this wire is highly sensitive and should be as high and as far away from the Motor as possible (yup, its that magnetic field prob again)

3/  If all else fails, a simple tip that often works for all RC Model enthusiasts is to wrap the receiver in Aluminium Foil, to shield against any magnetic and external radio interference.

4/  As a last resort, to protect against servo twitch, try ferrite beads. (available at Radio Shack or Maplins) These are threaded over the red, white (or yellow) and black wires of each servo.

5/  If you are using a FET Servo, the installation of a choke (a small electrical component) in the positive feed wire will smooth out any current spikes and reduce the possibility of "servo twitch".

6/  Another thing you might try is a "glitch buster" or "stutter stopper". Basically, this is a capacitor that simply plugs into your Radio Receiver and attempts to keep a level voltage supply to the Radio system.

For More Setup Information check out my Hints and Tips page.










On/Off Road
RC Models:

Radio
Equipment:

Accessories: