RCScrapyard ► Iconic Vintage Radio Controlled (RC) Model Car Archive ► Academy Plastic Model Co Road Runner
RCScrapyard Radio Controlled Models
Flags

1/10 Scale Electric Buggy:

Academy Road Runner (Radio Controlled Model)


Navigation: Sitemap  >  Manufacturers  >  Academy  >  Academy Timeline

All Manufacturers: Model Types  >  Buggys  >  1/10 Electric Buggys

History + Information (and How To Set-up Tips):


  Introduced by Academy Minicraft circa 1986, the 2WD Road Runner Buggy was available as a ready to assemble kit, or factory assembled, with a Mabushi 380 motor, three step mechanical speed controller and chrome anodised wheels.

  The model is considered to be a Tamiya Grasshopper clone, based on an ABS resin bathtub chassis, with a molded ABS bodyshell, sealed gearbox, gear type differential, rear coil spring over friction dampers and bushings.

Academy Road Runner I
▼ Scroll Down for More Images ▼


  To race the Academy Road Runner, it requires a high level of tuning for improved stability when cornering, to keep it on the track and give you more grip under acceleration. Even the smallest change in your cars settings can make a Big difference. Our simple to follow instruction chart will show how to attain the best Set-up for your personal requirements.

  With simple to follow language, we can point you towards the correct Electric Motor for your Road Runner and achieve the best Gearing, for your battery and motor combination.

  Learn the secrets the professionals have known for years to get the best from their Bearings using a number of simple tips. See how you can easily avert Radio interference, and the best way to safely Charge your Batteries, for improved acceleration and more run time.









Gas/Nitro Engines Body Shells Radio Transmitters etc Tires Wheels/Rims Electronic Speed Controllers Battery Packs / Chargers Electric Motors












Items For Sale:






Flags

★ Academy Road Runner Chassis ★
Academy Road Runner Chassis

★ Academy Road Runner II Chassis ★
Academy Road Runner II Chassis


Buying a Used Academy Road Runner
Buggy (and What to look for)


   Buying a used Academy Road Runner Electric Buggy, or any used RC Model, has a number of advantages. It is generally cheaper than new, ready built and may come with a variety of expensive hop-ups already installed. Cheap, pre-loved bargains are always becoming available. However, depending on the age of your purchase, it may need a little tender loving care before you can take it out on the back yard.

   The one thing you will always need is an instruction manual. If not supplied with your purchase, they can often be downloaded from the Academy website, or purchased separately on eBay. With an instruction manual, any problems with your model Buggy you may discover can easily be fixed.

Dampers
   When you receive your used Academy Buggy, make a general visual inspection of the chassis, front and rear wishbones, suspension shock towers etc, for any broken parts that may need to be replaced. Then, take a screwdriver and box spanner and check each self tapping screw and nut for security, taking care not to over tighten.

   Next, for those Academy models with oil filled shock absorbers, remove them from the chassis and dismantle the coil springs. The damper shafts should push in and pull out with a smooth action. If you feel a jolt as you change direction, this means the oil has leaked out and must be topped up. At the same time, change the O-Ring seals to prevent more leakage. Also check the damper shafts for damage. If they are scratched, change them as soon as possible.

   If the body shell of your Academy Road Runner is broken, ripped or damaged in any way, this can be easily repaired with rubber solution glue. Also, for added protection and if available for your Road Runner model, fit an under guard to stop dirt and gravel entering the chassis.

Titanium Turnbuckles
   Examine the drive shafts for wear and replace as required. If possible, change them for titanium. The steel shafts wear and bend too easily.

   If you intend to race your Road Runner Buggy model at a competitive level, I would also recommend you obtain and fit titanium pivot shafts, turnbuckles, tie rods and steering rods.

   The gearbox of your used Buggy should be opened up to check for gear wear and lubrication. A thin coat of grease is often used on internal gears and although this is fine for basic running around on the back yard, if you intend to race your Buggy at a higher level, this should be removed and replaced with racing oil (ZX1 or Teflon Oil). Of course, this should be reapplied after each race meeting.

Spur Gears
   Gears are a weakness on all Buggy RC models. Head on collisions can easily damage the gear teeth on nylon and plastic spur gears. Heavy impacts can also loosen the nuts or self tapping screws that hold the Electric Motor in Position, allowing the pinion gear to pull out of mesh slightly and rip the tops off the teeth on your spur gear. To minimise this possibility, fit bolts with locking nuts to the Electric Motor mount and remember to check them for security after every two or three runs.

   Ball joints always cause problems. For top level Electric Buggy racing, the plastic ball connectors should be checked and if deemed necessary changed after every meeting. A simple thing like a loose fitting connector popping off could easily end your race, so better safe than sorry.

Servo Gears
   The Road Runner steering servo is also prone to damage. In high speed crash situations, the fragile gear teeth of the servo can be broken off, rendering your expensive servo useless, so be sure to obtain a good quality "Servo Saver". Check out my Servo Information article.

   If body roll on your Academy Road Runner is a problem, handling can be improved with the use of stabilizers, anti roll or sway bars, stiffer tuning springs and, or, thicker silicone oil in the dampers.

Ball Bearings
   If your used Academy Buggy comes with plastic and sintered brass bushings (ring type bearings), check the shafts that run in them for wear. Dust and grit can get into these bearings and abrade the shafts. Therefore, you should replace them all with shielded ball bearings. If the model has been run with ring type bearings, you may have to change all the axles and driveshafts. For more information, take a look at my article, How to get the best from your Bearings.

   Finally, good luck with your Road Runner model and good racing.


For More on how to Setup your Buggy, check out my Hints and Tips page.


^ TOP ^












Manufacturers and Brands Catalogued and Listed by RC-Scrapyard.


   At present, the RC Model Manufacturers, Brands and Distributors covered by us are: ABC Hobby, Academy, Acme Racing, Agama Racing, Amewi, Ansmann Racing, ARRMA, Team Associated, Atomic RC, Axial, AYK, Bolink, BSD Racing, Capricorn, Carisma, Carson, Caster Racing, Cen, Corally, Custom Works, Durango, Duratrax, ECX - Electrix, Exceed RC, FG Modellsport, FS-Racing, FTX, Fujimi, Gmade, GS-Racing, Harm, HBX, Helion, Heng Long, Himoto Racing, Hirobo, Hitari, Hobao, Hong-Nor, Hot Bodies, HPI, HSP, Intech, Integy, Jamara, JQ Products, Kawada, Kyosho, Losi, LRP, Maisto, Mardave, Marui, Maverick, MCD Racing, Megatech, Mugen, New Bright, Nichimo, Nikko, Nkok, Ofna, Pro-Pulse, Protech, PTI, RC4WD, Redcat Racing, RJ-Speed, Robitronic, Schumacher, Seben, Serpent, Smartech, Sportwerks, Step-Up, Tamiya, Team-C Racing, Team Magic, Thunder Tiger, Tomy, Top Racing, Traxxas, Trinity, Tyco, Vaterra RC, Venom, VRX Racing, WLToys, X-Factory, Xmods, Xpress, Xray, XTM, Yankee RC, Yokomo, ZD Racing and Zipzaps.

   This is an ongoing project, with new and "lost in time" RC Model Brands being added as they are found and although most of those listed above have been covered in relative detail, some are still being researched and will be completed in the near future.


















Hints and Tips


Rechargeable Batteries
for RC Models


   At the time this article was written, there are four types of Rechargeable Batteries that are commonly in use for Radio Controlled Models.
Ni-Cad (Nickel Cadmium) Batteries have been around the longest. My first stick battery, purchased way back in 1987 was rated at 1200Mah (Mili Amp Hours) and with a silver can 27 Turn motor my Tamiya Boomerang would run around in the back yard for a good seven minutes before slowly coming to a stop. Ni-Cad development continued until around 1998 to a maximum rating of around 2000Mah and matchers pack builders and battery technicians were able to put together six cell packs with voltages approaching 7.4 Volts, to give those that could afford them, an edge over the rest.

   Ni-Mh (Nickel Metal Hydride) Batteries came along in the late 1990s and by the year 2000 were available at ratings up to 3000Mah. Again, matchers and pack builders worked hard to provide the ardent racer with packs to provide that little bit of extra power and ESC manufacturers also chipped in with improved controllers to take full advantage of this new technology.
   Now the problem wasn't gearing the car to get to the end of the race using the available battery power, but to find the brushed motor that could handle gear setting that provided the speed and acceleration without the motor overheating and wearing the commutator too much so it needed a skim after every 2 runs. My favourite at that time was the 9 Double.

   More recently, Li-Po (Lithium-Polymer) Batteries have appeared on the scene, providing are a huge step forward in performance when compared with Ni-Cad and Ni-Mh batteries. However, Li-Po Batteries are much more expensive than previous battery types, have a shorter effective life of between 200 and 400 charge cycles, compared to well over 1000 charge cycles for Ni-Cad and Ni-Mh and a high degree of care has to be taken when charging Li-Po batteries. They have been known to burst into flames or even explode, for this reason I do not recommend Li-Po batteries for RC beginners.
   Another problem with Li-Po packs is they are physically bigger in size, so for those with older "Vintage" models, they may not fit into the provided space for the battery on the chassis.

   The latest development in battery technology for RC are Li-Ion. Originally produced for Laptops, Ipods, Tablets and the like, they are now available for RC models. Much like Li-Po for price and charge cycle life, the power and capacity is a moderate improvement, but for me, at the moment, not worth the expense.

   One final word of warning. NEVER leave your charging Li-Po or Li-Ion battery unattended when being charged and NEVER above the recommended charge rate. After use, store each battery with about 60% charge remaining and always in a fireproof bag.


For More Setup Information check out my Hints and Tips page.







Hints and Tips

Soldering

   In the sport of Radio Controlled racing, there are a number of things you have to learn to get you up there with the best. One of the most difficult, for those with little practical skill, is the art of Soldering.

   For their 540 silver can motors, Tamiya provide two wires, typically green and yellow, soldered to the endbell, with two bullet connectors to plug into the speed controller. While this is fine for bashing around the back yard, as you advance to a higher level you will soon find just how inefficient this method is.

   Motor wires are best soldered directly to the ESC. That way no energy is lost through high current draw. Some of the top drivers at one time even used to solder their batteries directly to the ESC, but these days with connectors such as "Deans" and "Power Pole" this isn't necessary but I still wouldn't use any kind of connector for the motor.

   There are basically two kinds of solder. Plumbers solder which is made up of 60% Lead and 40% Tin, where as electrical solder is the opposite 40% Lead with 60% Tin. NEVER use plumbers solder for your battery, ESC or motor joints. Lead melts at 327 degrees C, where as tin melts at 232 degrees C. The higher Lead content of plumbers means it melts at a higher temperature, which is not good for your battery cells. Also, Tin has almost half the electrical resistance of lead, so with the higher Tin content of electrical solder, electricity flows much easier to your motor.

   More recently, due to the European regulations for lead use, lead free solders are becoming more widely used well, in Europe anyway. The problem with lead free is the melting temperature it is much higher, making it difficult to produce reliable joints.

   Lead, as we know, is a poison to the body if ingested or inhaled in certain quantities. so when using lead based solder, try not to inhale any of the fumes and always wash your hands after completing your work. One of my friends also wears cotton gloves, but I find these cumbersome.

   For me lead / tin solder is far easier to use and if used with care, has less potential to damage your batteries having a much lower melting temperature.

For More Setup Information check out my Hints and Tips page.










On/Off Road
RC Models:

Radio
Equipment:

Accessories: